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Preface

This volume contains the papers presented at the Fourth International Conference on Principles of Knowledge Repre-
sentation and Reasoning. The KR conferences have established themselves as the leading forum for timely, in-depth
presentation of progress in the theory and principles underlying the representation and computational manipulation of
knowledge. Following highly successful meetings in Toronto and Cambridge, Massachusetts, the conference convenes
this year in Bonn, outside of North America for the first time.

KR ’94 continues the tradition of high standards for accepted papers established by the preceding three conferences. We
were encouraged by the high quality of the 272 extended abstracts submitted for review and of the 55 chosen for
publication. Receiving submissions from every continent, the conference continues to maintain and broaden its interna-
tional character, with the proceedings presenting the work of authors from 15 countries.

This year’s conference continues to move towards a suitable balance between theoretical work and implemented,
applied, and experimental work. Many program committee members emphasized this balance in their reviews, and the
papers below present excellent examples of such work. Observing great concern about methodological problems among
the program committee, we asked Lin Padgham to organize a panel discussion on this topic.

Many areas traditionally attracting strong KR interest remain well represented this year, including deduction and search,
description logics, theories of knowledge and belief, nonmonotonic reasoning and belief revision, action and time,
planning and decision-making, and reasoning about the physical world. The presence of planning and diagnosis dimin-
ished, perhaps due to the appearance of new conferences and workshops devoted to these topics, while the presence of
other topics grew, including the relations between KR and other subfields of artificial intelligence. Some papers, includ-
ing the invited talk by Didier Dubois, concern the integration of numeric and symbolic methods in preference modeling
and uncertainty, while others, including the invited talk by Jaime Carbonell, investigate connections between KR and
machine leaming.

We also sought to strengthen ties between KR and related fields such as philosophy, linguistics, psychology, and
economics. While we did not move as far in this direction as hoped, we are glad to include papers along these lines in
the program, and were very fortunate to get Len Schubert to organize the panel discussion aimed at identifying ideas
from natural language and linguistics for exploitation in KR.

Jon Doyle
Program Co-Chair

Erik Sandewall
Conference Chair

Pietro Torasso
Program Co-Chair



Acknowledgments

KR ’94 would not have been possible without the efforts of a great number of dedicated people.

First and foremost was our excellent international program committee, who contributed extraordinary effort in review-

ing and comparing 272 papers:
Giuseppe Attardi
University of Pisa, Italy

Franz Baader
DFKI, Germany

Fahiem Bacchus
University of Waterloo, Canada

Philippe Besnard
IRISA, France

Piero Bonissone
GE, USA

Craig Boutilier
UBC, Canada

Ron Brachman
AT&T, USA

Maurice Bruynooghe
KUL, Belgium

Anthony Cohn
University of Leeds, UK

Emest Davis
NYU, USA

Rina Dechter
UC Irvine, USA

Johan de Kleer
Xerox, USA

Oskar Dressler
Siemens, Germany

Jennifer Elgot-Drapkin
Arizona State University, USA

Richard Fikes
Stanford University, USA

Alan Frisch
University of York, UK

Hector Geffner
Simon Bolivar University, Venezuela

Georg Gottlob
TU Wien, Austria

Pat Hayes
University of Illinois, USA

Hirofumi Katsuno
NTT, Japan

Henry Kautz
AT&T, USA

Sarit Kraus
Bar-Ilan University, Israel
Maurizio Lenzerini
University of Rome, Italy
Vladimir Lifschitz
University of Texas, USA

David Makinson
Unesco, France

Joao Martins
IST, Portugal

David McAllester
MIT, USA

John-Jules Meyer
University of Amsterdam, Netherlands

Katharina Morik
University of Dortmund, Germany

Johanna Moore
University of Pittsburgh, USA

Hideyuki Nakashima
ETL, Japan

Bemhard Nebel
University of Ulm, Germany

Hans Juergen Ohlbach
Max Planck Institut, Germany

Lin Padgham
Linkoping University, Sweden

Peter Patel-Schneider
AT&T, USA

Ramesh Patil
USC/ISI, USA

Raymond Perrault
SRI, USA

David Poole
UBC, Canada

Henri Prade
IRIT, France

Anand Rao
AAII Australia

Jeff Rosenschein
Hebrew University, Israel

Stuart Russell
UC Berkeley, USA

Len Schubert
University of Rochester, USA

Marek Sergot
Imperial College, UK

Lokendra Shastri
ICSI, USA

Yoav Shoham
Stanford University, USA

Lynn Stein
MIT, USA

Devika Subramanian
Comell University, USA

William Swartout
USC/SI, USA

Austin Tate
AIAI University of Edinburgh, UK

Peter van Beek
University of Alberta, Canada

Michael Wellman
University of Michigan, USA



Preface/Acknowledgments  xi

The program chairs and committee were fortunate to have the assistance of a number of other researchers who offered
suggestions and comments concerning the submitted extended abstracts. Many of these people provided help at short
notice during the Christmas holidays, for which we are very grateful.

Siegfried Bell Alois Haselboeck Anke Rieger

University of Dortmund, Germany Siemens, Austria University of Dortmund, Germany
Piero Bonatti Joachim Hertzberg Irina Rish

TU Wien, Austria GMD, Germany UC Irvine, USA
Dmitri Boulanger Ian Horswill Andrea Schaerf

KUL, Belgium MIT, USA Universitd di Roma, Italy
Marco Cadoli Kalev Kkask Marco Schaerf

Universita di Roma, Italy UC Irvine, USA Universita di Cagliari, Italy
Diego Calvanese Volker Klingspor Klaus Schild

Universita di Roma, Italy University of Dortmund, Germany DFKI, Germany
Giuseppe De Giacomo Jerome Lang Eddie Schwalb

Universita di Roma, Italy IRIT, France UC Irvine, USA
Marc Denecker William J. Long Grigori Schwarz

KUL, Belgium MIT, USA Stanford University, USA
Luc De Raedt Alberto Martelli Maria Simi

KUL, Belgium Universita di Torino, Italy University of Pisa, Italy
Danny De Schreye Igor Mozetic Elizabeth Sonenberg

KUL, Belgium ARIAI Austria University of Melbourne, Australia
Brian Drabble Srini Narayanan Marcus Stumptner

University of Edinburgh, UK ICSI, USA TU Wien, Austria
Thomas Eiter Daniele Nardi Peter Szolovits

TU Wien, Austria Universita di Roma, Italy MIT, USA
Gerhard Friedrich Stephen Omohundro Mike Uschold

Siemens, Austria ICSI, USA University of Edinburgh, UK
Dan Frost Luigi Portinale Henk Vandecasteele

UC Irvine, USA Universita di Torino, Italy KUL, Belgium

We also thank our invited speakers, Jaime Carbonell, Didier Dubois, and William Woods, for their important contribu-
tions to the conference, and Lin Padgham and Len Schubert for organizing the panels on KR methodology and natural

language opportunities.

We thank Gerhard Lakemeyer for his great effort in handling the logistical matters involved in the conference site,
Luzia Sassen-HePeler for her help in producing the brochure, Christine Harms for handling matters relating to the
Stresemann Institut, and our publicity chair, Werner Hom, who worked long hours to spread the word about KR’'9%4
around the globe.

We thank Jim Schmolze, the KR treasurer, for writing the checks needed to keep things moving.

We thank Bemnhard Nebel and Ramesh Patil for providing us with a variety of software that helped automate some of
the tasks involved in reviewing the submitted papers, and for providing quick answers to desperate questions at all
times of the day.

We thank Matt Ginsberg for investigating the US banking system and possible methods for simplifying the payment of
registration fees.



xil Preface/Acknowledgments

As is traditional, the home organizations of the conference organizers provided significant administrative support. We
wish to thank MIT and Scott Reischmann personally; the Universitd di Torino; Linkdping University and Lise-Lott
Svensson personally; and Institute of Computer Science III, University of Bonn and Martina Fusch personally.

We are happy to be able to continue the tradition of publishing the proceedings through Morgan Kaufmann Publishers,
and thank Mike Morgan and Doug Sery for all their help. We also thank Jennifer Ballentine and her staff for organizing
the production of the proceedings at Professional Book Center in Denver, Colorado.

We gratefully acknowledge invaluable support from the Gesellschaft fiir Informatik, the Austrian Society for Artificial
Intelligence, the Canadian Society for Computational Studies of Intelligence, the European Coordinating Committee on
Artificial Intelligence, the American Association for Artificial Intelligence, and the International Joint Conferences on
Artificial Intelligence.

Finally, we thank all the authors who submitted their extended abstracts for review. There would be no conference
without them.



Contributed
Papers



Digitized by GOOS[@



‘

A Computational Account for a
Description Logic of Time and Action

Alessandro Artale* and Enrico Franconi
Knowledge Representation and Reasoning Lab.
IRST, 1-38050 Povo TN, Italy
{artalel|franconi}@irst.it

Abstract

A formal language for representing and rea-
soning about time and action is presented. We
employ an action representation in the style
of Allen, where an action is represented by de-
scribing the time course of events while the ac-
tion occurs. In this sense, an action is defined
by means of temporal constraints on the world
states, which pertain to the action itself, and
on other more elementary actions occurring
over time. A distinction between action types
and individual actions is supported by the for-
malism. Plans are seen as complex actions
whose properties possibly change with time.
The formal representation language used in
this paper is a description logic, and it is pro-
vided with a well founded syntax, semantics
and calculus. Algorithms for the subsumption
and recognition tasks — forming the basis for
action management — are provided.

1 INTRODUCTION

The goal of this work is to investigate a formal frame-
work that permits dealing with time, actions and plans
in a uniform way. As opposed to the most common ap-
proaches to modeling actions as state change - e.g., the
formal models based on situation calculus [McCarthy
and Hayes, 1969], the STRiPs-like planning systems
[Lifschitz, 1987) — where actions are instantaneous and
defined as functions from one state to another, we pre-
fer to explicitly introduce the notion of time by ad-
mitting that actions take time, like in [Allen, 1991].
Allen builds a representation based on time, eliminat-
ing the notion of state as encoded in the STRIPS-like
systems by means of preconditions — causes — and post-
conditions — effects. This formalism is not intended to
capture any sense of causality, but it represents an ac-
tion by describing the time course of events while the
action occurs. Besides, unlike STRIPS-like systems, an
action takes time: then, it is possible to define what is

*Current address: Ladseb-CNR, 1-35020 Padova PD,
Italy

true while the action is occurring. Different actions can
be concurrent or may overlap in time; effects of over-
lapping actions can be different from the sum of their
individual effects; effects may not follow the action but
more complex temporal relations may hold. Starting
from a formal language able to express temporally re-
lated objects, actions are represented through temporal
constraints on the world states, which pertain to the
action itself, and on other more primitive actions oc-
curring over time. With respect to [Allen, 1991)], our
formalism has a clear distinction between the language
for expressing action types (the conceptual level) and
the language for expressing individual actions (the as-
sertional level). Plans are built by temporally relating
action types in a compositional way using the tempo-
ral constructors available in the language. In this way,
since the temporal relationships are proper operators of
the basic language, the distinction between actions and
plans disappears. As a matter of fact, we do not need
distinct languages for objects and states representation,
for time representation, for actions representation, and
for plans representation.

The basic temporal language we propose is a concept
language [Nebel, 1990, i.e. a description logic of the
KL-ONE family!, and it is inspired by the work of
[Schmiedel, 1990). The use of a concept language to
represent directly action and plan descriptions allows
us to exploit the ideas developed in the concept lan-
guages family, like procedures for subsumption, classifi-
cation and instance recognition [Hollunder et al., 1990;
Nebel, 1990]. In this paper we present a calculus to
check subsumption between actions types, and to rec-
ognize which type of action has taken place at a certain
time interval from the observation of what is happening
in the world. A plan taxonomy based on subsumption
can be built, and it can play the role of a plan library
to be used for plan retrieval and plan recognition tasks
[Kautz, 1991].

Several temporal extensions of a concept language ex-
ist in the literature: Claudio Bettini in [Bettini, 1992]
and [Bettini, 1993] proposes a variable-free extension

!Concept languages are also called Frame-Based Descrip-
tion Languages, Term Subsumption Languages, Termino-
logical Logics, Taxonomic Logics or Description Logics.
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with both existential and universal temporal quantifi-
cation; [Devanbu and Litman, 1991) and [Weida and
Litman, 1992] - and recently [Weida and Litman, 1994)
- propose a loose hybrid integration between concept
languages and respectively regular expressions and con-
straint networks; [Schmiedel, 1990] proposes a very ex-
pressive but undecidable language with variables and
temporal quantifiers; [Schild, 1993] proposes the em-
bedding of point-based tense operators in a proposi-
tionally closed concept language — his ideas have been
applied in the BACK terminological representation sys-
tem; [Lambrix and Ronnquist, 1993) study the combi-
nation of the temporal logic LITE, where the notion of
object is revised from being an indivisible entity into
being a temporal structure of versions, and a termi-
nological logic. In [Song and Cohen, 1991], temporal
constraints between actions and its decomposed sub-
actions — in the context of hierarchical planning — are
made explicit from the structure of the plan, in order
to improve the results of plan recognition.

Our proposal reduces the expressivity of [Schmiedel,
1990] in the direction of [Weida and Litman, 1992];
in this way, we obtain a decidable logic with a sound
and complete subsumption algorithm. However, while
[Weida and Litman, 1992] use two different formalisms
to represent actions and plans - a non temporal concept
language for describing actions and a second formal-
ism to compose plans by adding temporal information
- we choose an extension of a description logic where
time operators are available directly as term construc-
tors. This view implies an integration of a temporal do-
main in the semantic structure where terms themselves
are interpreted, giving the formal way both for a well-
founded notion of subsumption and for proving sound-
ness and completeness of the corresponding algorithm.
Moreover, we are able to build temporal structured ac-
tions — as opposed to atomic actions — describing how
the world state changes because of the occurrence of
an action. In fact, our language allows for feature rep-
resentation, as suggested in [Heinsohn et al., 1992], in
order to relate actions to states of the world.

The paper is organized as follows. The formal language
is first introduced, by presenting its syntax and seman-
tics at both the concept and individual levels. The
subsumption and instance recognition problems are for-
mally defined in this framework. Examples of applica-
tion of the temporal language for action and plan repre-
sentation and reasoning are presented in section 3. The
calculus is finally briefly revealed, by looking first to a
normal form for concept expressions, and then to the
algorithms for subsumption and instance recognition.

2 THE TEMPORAL LANGUAGE

We introduce in this section the temporal language.
Pursuing the ideas of [Schmiedel, 1990}, an interval-
based temporal extension of concept languages is inves-
tigated. A well founded syntax and semantics for the
language is given and a formal definition of the sub-
sumption and recognition reasoning tasks is devised.

C, D — F I (non-temporal concept)
cnbD l (conjunction)
CubD)| (disjunction)
C@Xl (qualifier)
C[Y]@X | (substitutive qualifier)
°(X+) 1&+ .C (existential quantifier)
E, F — A I (atomic concept)
T (top)
EnF l (conjunction)
EUF l (disjunction)
plg l (agreement)
p: E (selection)
P9 — f I (atomic feature)
*g I (atomic parametric feature)
pog (feature chain)
’ - (X (R) Y) (temporal constraint)
R, S — R 9 S | (disjunction)
S | mi I f l e (Allen’s relations)
X, Y — ﬂ | X I y | e (temporal variables)

Figure 1: Syntax rules for the temporal language.

Basic types of the language are concepts, individuals,
temporal variables and intervals. A concept is a descrip-
tion gathering the common properties among a collec-
tion of individuals. Concepts can describe entities of
the world, states, events. Temporal variables denote
intervals bound by temporal constraints, by means of
which abstract temporal patterns in the form of con-
straint networks are expressed. Concepts (resp. indi-
viduals) can be specified to hold at a certain interval
variable (resp. value) defined by the constraint net-
work. In this way, action types (resp. individual ac-
tions) can be represented in a uniform way by tempo-
rally related concepts (resp. individuals).

Concept ezpressions (denoted by C, D) are built out
of atomic concepts (denoted by A), atomic features
(denoted by f), atomic parametric features (denoted
by %¢)? and constrained interval variables (denoted by
X,Y) according to the abstract syntax rules of fig-
ure 1°. For the basic interval relations we use the same
notation as in [Allen, 1991]: before (b), meets (m), dur-
ing (d), overlaps (o), starts (s), finishes (f), equal $=)’
after (a), met-by (mi), contains (di), overlapped-by (oi),
started-by (si), finished-by (fi).

Temporal variables are introduced by the temporal exis-
tential quantifier “O”. Variables appearing in temporal
constraints should be declared within the same tempo-

2Names for atomic features and atomic parametric fea-
tures are from the same alphabet of symbols; the * symbol
is not intended as operator, but only as differentiating the
two syntactic types.

3The syntax rules are expressed following the tradition
of concept languages [Hollunder et al., 1990]. It can be read
as, e.g. if C is a concept expression and X is a temporal
variable, then C@QX is a concept expression.
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Boil-Spaghetti

p———

t
Make-Spaghetti Boil N
-~ - >

Figure 2: Temporal dependencies in the definition of
the Boil-Spaghetti action.

ral quantifier, with the exception of the special variable
§. Temporal variables appearing at the right hand side
of a “@” operator are called bindable. Concepts should
not include unbound (a.k.a. free) bindable variables,
with the exception of the special variable {; a bindable
variable is said to be bound in a concept if it is de-
clared at the nearest temporal quantifier in the body of
which it occurs. Moreover, in chained constructs of the
form ((C[Y1]@X,)[Y2]@X;...) non bindable variables
should not appear more than once, with the exception
of the special variable §.

In this language, unlike [Schmiedel, 1990; Bettini,
1992], it is not possible to express the negated of the ex-
istential temporal quantifier: it is argued that the dual
of O - i.e. the universal temporal quantifier O - leads
the satisfiability problem - and the subsumption — for
the language to be undecidable [Halpern and Shoham,
1991; Venema, 1990; Bettini, 1993].

Concept expressions are interpreted in our logic over
pairs of temporal intervals and individuals (i, a), mean-
ing that the individual a is in the extension of the con-
cept at the interval i. If a concept is intended to denote
an action, then its interpretation can be seen as the set
of individual actions of that type occurring at some in-
terval.

Within a concept, the special § variable refers to the
generic interval at which the concept itself holds?; in
the case of actions, it refers to the temporal interval at
which the action itself occurs. A concept holds at an
interval X if it is temporally qualified at X - written
CQJX; in this way, every occurrence of § embedded in
C is interpreted as the X variable. Since any concept is
implicitly temporally qualified at the special { variable,
it is not necessary to explicitly qualify concepts at f.
The temporal existential quantifier introduces interval
variables, related each other and possibly to the § vari-
able in a way defined by the set of temporal constraints.
The informal meaning of a concept with a temporal
existential quantification can be understood with the
following examples in the action domain [Weida and
Litman, 1992).

Boil-Spaghetti =
Oz (z b §). (Boil N Make-SpaghettiQr)

Boil-Spaghetti denotes, by definition, any action oc-
curring at some interval such that an event of Boil-
ing occurs at the same time and an event of type Ma-
ke-Spaghetti occurs at some preceding interval. The
f interval could be understood as the occurring time

*This variable is usually called NOW. We prefer not to
adopt such a name, because it could be misleading.

of the action type being defined: referring to it within
the definition is an explicit way to temporally relate
states and actions occurring in the world with respect
to the occurrence of the action itself. The temporal
constraint (z b ) states that the interval denoted by
z should be before the interval denoted by f{, i.e. the
occurrence interval of the action type Boil-Spaghetti.
Figure 2 shows the temporal dependencies of the inter-
vals in which the concept Boil-Spaghetti holds.

As a more complex example, let Chef, Make-Spa-
ghetti, Make-Fettuccine and Boil be atomic con-
cepts, *AGENT be an atomic parametric feature and y
be a temporal variable. We can describe the class of
“any action of a chef boiling pasta after having made
spaghetti or fettuccini” as:

Boil-Pasta =
Oy (yb ).
(*AGENT : Chef N Boil N
(Make-Spaghetti Ui Make-Fettuccine)Q@y)

The parametric feature *AGENT plays the role of formal
parameter of the action type Boil-Pasta, mapping any
instance of the action itself to its own agent, indepen-
dently from time. The occurrence time of the disjunc-
tive action type Make-Spaghetti LI Make- Fettuccine
is bound to the y interval, while the occurrence times
of xAGENT:Chef, Boil and Boil-Pasta itself are implic-
itly bound to the { interval. Please note that, whereas
the existence and identity of the xAGENT of the action
is independent from time, it can be qualified differently
in different intervals of time, e.g the fact that it is a
Chef is necessarily true only at the { interval.

The temporal substitutive qualifier C[Y]@X, renames
the variable Y, within C, to X and it is a way of
making coreference between two temporal variables in
different scopes — i.e. declared in different temporal
quantifiers. This is useful when using already defined
concept names. As an example, Boil-Pasta could be
redefined by simply renaming the temporal variable z
within Boil-Spaghetti:

Boil-Pasta =
Oy (y b §). (XAGENT : Chet N
(Boil-Spaghetti[z]@y U
(Boil N Make-Fettuccine@y)))

The assertion Boil-Pasta(i,a) says that a is an in-
dividual action of types Boil-Pasta and Boil at the
interval i, while it is either of type Make-Spaghetti or
of type Make-Fettuccine at some interval j preceding
i. Moreover, the same assertion implies that a is re-
lated to an xAGENT , say b, which is of type Chef at the
interval i:

Boil-Pasta(i,a) —>
3b. Boil(i,a) A xAGENT(a, b) A Chet(i, b) A

Jj. b(j, i) A (Make-Spaghetti(j,a)V
Make-Fettuccine(j,a))
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(S)E = {{[u,v),[v1,m]) € TT x TS|
u=wAv<n
) = {{lwo],[w1,m]) € TExTZ|
v=u1Auy <u
(ml)s = {([uv v]v[“lavll) € 72' X Tz l
u=un
(meaning of other Allen’s relations)
(R, S = Rust
XBE = (V:X=TE| VX (R)Y)eTR.

(V(X),V(Y)) € (R)*}
Figure 3: The temporal interpretation function.

2.1 THE FORMAL SEMANTICS

We assume a linear, unbounded and dense temporal
structure 7 = (P, <), where P is a set of time points
and < is a strict total order on P. The interval set
of a structure 7 is defined as the set T} of all closed
intervals [u,v] = {z€P |u<z<v,u#v}inT.

An interpretation T = (T, A%, %) consists of a set T2
(the interval set of the selected temporal structure 7), a
set AZ (the domain of T) and a function -Z (the prim-
ilive interpretation function of I). The primitive in-
terpretation is a function giving a meaning to atomic
concepts, features and parametric features:

AT CT? x AT

fI.(T:xAI)P‘."'_“:"AI. *I.AIP‘,"_":"AI

: ; g* :

Atomic parametric features are interpreted as partial
functions; they differ from atomic features for being
independent from time.

To give a meaning to complex temporal and concep-
tual expression, we introduce the temporal interpreta-
tion function and the general interpretation function.

The temporal interpretation function -¢ depends on the
temporal structure 7, and it is defined in figure 3. The
labeled directed graph (X, T2), where X is a shorthand

for a set of variables — representing the nodes — and 7
is a shorthand for a set of temporal constraints — repre-
senting the arcs, is called temporal constraint network;
the temporal interpretation of a temporal constraint
network is the set of all assignments of the variables
which satisfy the temporal constraints. An assignment
of variables is a function V : X — T} associating an
interval value to each temporal variable. We will write
(X,Té)le,_,‘hh_.h,m} to denote the subset of (X, T)¢
where the variable z; is mapped to the interval value t;.
A temporal constraint network is consistent if it admits
a non empty interpretation.

A general interpretation function -{,,,‘H, based on a in-
terpretation Z, an assignment of variables V, an in-
terval ¢t and a set of constraints H = {z; — t1,...}
over the assignments of inner variables, is defined in
such a way that the equations of figure 4 are satisfied.
The composition should be read from left to right, i.e.

AL = {a€AT|(ta)eAT)
foem for aT PR A.I |
Va. (a € dom f; —~
(t,a) € dom fT) A
- fg(ﬂ) = fz(tv a)
*veH = *g
T\II tH = at
(CnD)yn = CHnNDY,n
(C u D)%’.t.'l-t = 05.:,11 U D\Im,u
POV = PemOahen
(p: E)j\:).t,u = {a € domp%,t.‘H |
s P%},c.n(“) € E\Im,H}
Ploven = {a szom Phe Ndomgd 4 |
z Pv,t,‘H(a) = q\z,’,_ﬂ(a)}
(C@X)v_,_-,.‘ = (C[”]@X)e.c,ﬁ
Clm X =1
Y=14
CL vixym WX #1,
€8T ere = { oo ey
veruvewty EZE
C\I),t.nu(y-.v(xn if ;f ;‘ .'
(OX)R.C)} e = {aeAl|
T E
IW. We (X,E)HU“M) A
a€ CEV,C.O}

Figure 4: The general interpretation function.

(p{,','.u °‘1€,t,‘u)(“) means q%y,’,{(p{,',m(a)). The expres-
sion dom f{ , 5, (respectively, dom fT) denotes the do-
main of the partial function fJ, 4 (f%) - i.e., a subset
of AT (T} x AT) for which fJ, 5 (f7) is defined. In-
tuitively, the general interpretation of a concept Cﬁ','u
is the set of entities of the domain which are of type
C at the time interval ¢, with the assignment for the
free temporal variables in C given by V, and with the
constraints for the assignment of variables in the scope
of the outermost temporal quantifiers given by H.

In absence of free variables in the concept expression
- with the exception of §, we introduce the natural in-
terpretation function Cj being equivalent to the gen-
eral interpretation function C‘I,)‘,.H with any V such
that V(§) = t, and H = 0. The set of interpretations
{Cg','n} obtained by varying Z,V,t with a fixed H is
maximal wrt set inclusion if H = 0, i.e. the set of
natural interpretations includes any set of general in-
terpretations with a fixed . In fact, since H represents
a constraint in the assignment of variables, the uncon-
strained set is the larger one.

An interpretation Z is a model for a concept Cif CF # 0
for every t. If a concept has a model, then it is satisfi-
able, otherwise it is unsatisfiable. A concept C is sub-
sumed by a concept D (written C C D) if CZ C D7 for
every interpretation 7 and every interval ¢.

Concept definitions are introduced by terminological
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axioms of the form A = C. An interpretation Z satisfies
A = Ciff A7 = C7, for every t. A terminology (TBox)
is a finite set of terminological axioms, with the restric-
tion that an atomic concept may appear at most once in
the left-hand side of an axiom in the terminology, and
that the terminology may not contain cycles [Nebel,
1990]. An interpretation Z is a model for a TBox iff
it satisfies all terminological axioms in the TBox. An
ezpanded TBox, i.e. a terminology where each defini-
tion does not make use of the other definitions, is ob-
tained by applying an interpretation-preserving expan-
sion procedure’, i.e. substituting every defined concept
occurring in a definition with its defining term.

Please note that concepts in this language are always
satisfiable, with the proviso that the temporal con-
straints introduced by the existential quantifiers are
consistent. This can be easily checked, after the reduc-
tion of the concept into a normal form (see section 4),
by checking each resulting temporal constraint network
using some standard algorithm [van Beek and Cohen,
1990]. In the following we will consider satisfiable con-
cepts only.

It is interesting to notice that only the relations s, f, mi
are really necessary in the concept language, because it
is possible to express any temporal relationship between
two distinct intervals using only these three relations
and their transposes si, fi, m (Halpern and Shoham,
1991]. In fact, the following equivalences hold:

Oz (z a §). CQz = Oz (z mif). (Oy (y mig). COy)Qz
Oz (zd ). CQzr =0z (zs ). (Cy(yfi). CQy)Qz
Oz (z o). CQz = Oz (z s ). (Cy(yfif). CQy)Qz
Oz (z=§).CQ@z=C

Other interesting equivalences are the following:

c=0()(.C

C =cat

ceXx = Clfjex

(clX]aY)[Z]eWw = (C[z]eW)[X]aY
T=0XE. T

2.2 THE ASSERTIONAL LANGUAGE

We consider now assertions, i.e. predications on
temporally qualified individual entities; usually, they
are referred to as ABoz stalements. Let O be the
alphabet of symbols denoting individuals; an asser-
tion is a statement of one of the following forms
C(i,a), p(i,a,b), xp(a,d), R(i,j), where C is a con-
cept, p is a feature, *p is a parametric feature, R is a
temporal relation, a and b are in O and denote individ-
uals, ¢ and j denote intervals in 7.

In order to assign a meaning to the assertions, the in-
terpretation function -Z is extended to individuals, so
that a¥ € AZ for each individual a € O and af # b7
if a # b (Unique Name Assumption). Moreover, we in-
tend i€ to be an element of 7. The semantics of the

SThe expansion procedure can be expensive [Nebel,
1990].

Make-Spaghetti —- Boil
e (before)

Figure 5: The graphical definition of the Boil-Spa-
ghetti plan.

assertions is the following: C(i, a) is satisfied by an in-
terpretation Z iff af € C.-I;; p(i, a, b) is satisfied by Z iff
p%(a%) = b%; xp(a, b) is satisfied by I iff xp?(a%) = b7;
and R(i, j) is satisfied by T iff (i€, j¢) € RE.

A set T of ABox statements and TBox axioms is called
a knowledge base. An interpretation I is a model of &
iff every assertion and every terminological axiom of ¥
is satisfied by Z. If ¥ has a model, then it is satisfiable.
L logically implies an assertion a (written £ [ a) if
a is satisfied by every model of £. Given a knowledge
base ¥, an individual a in @ is said to be an instance
of a concept C at the interval i if £ = C(i, a).

3 ACTIONS AND PLANS

We show in this section how the temporal language
can be applied for action and plan representation using
some common domains, like the cooking domain [Weida
and Litman, 1992] and the block world domain [Allen,
1991]. While actions describe how the world is affected
by their occurrence, plans are described as a collection
of action types constrained by temporal relations. In
this way, a plan can be graphically represented as a
temporal constraint network, where nodes denote ac-
tion types. At this level of representation, plans can be
seen as complez actions: since actions composing a plan
can be expanded, plans and actions are not structurally
different. This distinction is further elaborated in [Ar-
tale and Franconi, 1994], where each action composing
a plan is considered as a step referring to a different
individual action, and an appropriate function relates
a plan to its steps.

3.1 THE COOKING DOMAIN

The plan Boil-Spaghetti introduced in section 2 can
be depicted as in figure 5.

Boil-Spaghetti =
Oz (z b §). (Boil N Make-Spaghetti@z)

The definition employs the § interval to denote the oc-
currence time of the plan itself; in this way, it is possible
to describe how different actions or states of the world
concurring to the definition of the plan are related to
it. This is why the variable { is explicitly present in
the definition of Boil-Spaghetti, instead of a generic
variable: the Boil action should take place at the same
time of the plan itself.

The definition of a plan can be reused within the defi-
nition of other plans; the plan Boil-Spaghetti defined
above is used in the definition of Assemble-Spaghet-
ti-Marinara (see figure 6):

Assemble-Spaghetti-Marinara =
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Boil-Spaghetti
(b@ Put-Together-SM
Make-Marinara

Figure 6: The graphical definition of the Assem-
ble-Spaghetti-Marinara plan.

Oy z w) (y b w)(z b w). (Boil-Spaghetti@y N
Make-Marinara@:z M
Put-Together-SMQw)

In this case, precise temporal relations between the two
temporal constraint networks are asserted (figure 7):
the action Put-Together-SM takes place after the Boil
action. Observe that the occurrence interval of the plan
Assemble-Spaghetti-Marinara does not appear in the
figure, because it is not temporally related with any
other interval.

A plan subsuming Assemble-Spaghetti-Marinara is
the plan defined below Prepare-Spaghetti, supposing
that the action Make-Sauce subsumes Make-Marinara.
This means that among all the individual actions of the
type Prepare-Spaghetti there are all the individual
actions of type Assemble-Spaghetti-Marinara:

Prepare-Spaghetti =
O (y 2) (). (Boil-Spaghetti@y M Make-Sauce@z)

Please note that Boil-Spaghetti does subsume neither
Prepare-Spaghetti nor Assemble-Spaghetti-Mari-
nara, even if the former is part of the definition of these
latter. This could be better explained if we observe how
the Prepare-Spaghetti plan is expanded:

Prepare-Spaghetti =
O (z y 2)(z b y). (Boil@y M Make-Spaghetti@z N
Make-Sauce@2)

The effect of binding Boil-Spaghetti to the temporal
variable y has been that the Boil action occurs at the
interval y, which is possibly different from the occurring
time of Prepare-Spaghetti; while Boil-Spaghetti
and Boil actions take place necessarily at the same
time. Subsumption between Prepare-Spaghetti and
Boil-Spaghetti fails since different temporal relations
between the actions composing the two plans and the
plans themselves are specified. In particular, we can
observe that the plan Boil-Spaghetti denotes a nar-
rower class than the plan

O(z y) (z b y). (Boil@y M Make-Spaghetti@z),

which subsumes each of Prepare-Spaghetti, Assem-
ble-Spaghetti-Marinara and Boil-Spaghetti.

3.2 THE BLOCK WORLD DOMAIN

As a further example of the expressive power of the
temporal language, we show how to represent the Stack
action in the block world, as it is defined in [Allen,
1991). A stacking action involves two blocks, which
should be both clear at the beginning; the central part
of the action consists of grasping one block; at the end,

Make-Marinara Put-Together-SM
-~ —>- -~ >
Boil-Spaghetti
y
Make-Spaghetti Boil N
-~ >~ - >

Figure 7: Temporal dependencies in the definition of
Assemble-Spaghetti-Marinara.

the blocks are one on top of the other, and the bottom
one is no more clear (figure 8).

Our representation borrows from the RAT system
[Heinsohn et al., 1992] the intuition of representing ac-
tion parameters by means of partial functions mapping
from the action itself to the involved action parame-
ter. In the language, these functions are called para-
metric features. For example, the action Stack has
the parameters *O0BJECT1 and xOBJECT2, representing
in some sense the objects which are involved in the
action independently from time. So, in the assertion
“x0BJECT1(a, block-a)”, block-a denotes the first ob-
ject involved in the action a at any interval. On the
other hand, an assertion involving a (non-parametric)
feature, e.g. “ON(i, block-a, block-b)”, does not imply
anything about the truth value at intervals other than
i.

The concept definition makes use of temporal quali-
fied concept expressions, including feature selections
and agreements. The expression (xOBJECT2 : Cle-
ar-Block)@z means that the second parameter of the
action should be a Clear-Block at the interval denoted
by z; (xXOBJECT100N | xOBJECT2)@y indicates that at
the interval y the object on which xOBJECT1 is placed
is *0BJECT2. The formal definition of the action Stack
is:

Stack = O(zyzv w)
(= fi 1)(y mi B)(z mi §)(v o })
(w f §)(w miv).
(g*OBJECTz : Clear-Block)@z N
*0BJECT100N | x0BJECT2)@y N
(¥OBJECT1 : Clear-Block)@u 1

(*OBJECT1 : Hold-Block)Qw N
(*OBJECT1 : Clear-Block)@z)

The above concept does not state which properties are
the prerequisites for the stacking action or which prop-
erties must be true whenever the action succeeds. What
this action intuitively states is that x0BJECT1 will be on
*0BJECT2 in a situation where both objects are clear at
the start of the action. Note that the world state de-
scribed at the intervals denoted by v, w, z is the result
of an action of grasping a previously clear block:

Oz w z) (zof)(wff)(wmiz)(zmit).
((xOBJECT1 : Clear-Block)@xz I
(*OBJECT1 : Hold-Block)@uw N
(*OBJECT1 : Clear-Block)@z)

Grasp =
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Stack(0BJ1, 02)

Y

'
CIear-Block(Ol)AH‘old-Block(Ol); lear-Block(01)
v T w R
Clear-Block(02) _ ON(01, 02)
z Ty

Figure 8: The definition of the Stack action.

We can redefine the Stack action by making use of the
Grasp action:

Oz yuv) (zfif)(ymif)(uf)(vod).
((*OBJECT2 : Clear-Block)@z N
(xOBJECT100N | x0BJECT2)@y N

(Grasp[z]@v)@u)

The temporal substitutive qualifier (Grasp[z]Q@u) re-
names within the defined Grasp action the variable z
to v and it is a way of making coreference between two
temporal variables, while the temporal constraints pe-
culiar to the renamed variable = are inherited by the
substituting interval v. The effect of temporally qual-
ifying the grasping action at u is that the § variable
associated to the grasping action itself is bound to the
interval denoted by u - remember that the variable {
used inside an action refers to the occurrence time of
the action itself. Because of this binding on the occur-
rence time of the grasping action, the { variable in the
grasping action and the § variable in the stacking action
denote different time intervals, so that the grasping ac-
tion occurs at an interval finishing the occurrence time
of the stacking action.

Stack =

Now we show how from a series of observations in the
world we can make action recognition, an inference ser-
vice which computes if an individual action is an in-
stance of an action type at a certain interval. Given the
following ABox, describing a world where blocks can be
clear, grasped and/or on each other and where a generic
individual action a is taking place at time interval i,
having the blocks block-a and block-b as its parameters:

*0BJECT1(a, block-a), x0BJECT2(a, block-b),

of(iy,14), Clear-Block(iy, block-a),

fi(i2,14), Clear-Block(iz, block-b),

mi(is, i1), f(i3,%s), Hold-Block(is, block-a),

mi(i4,44), Clear-Block(i4, block-a),

mi(is, i,), ON(is, block-a, block-b)
then the system recognizes that in the context of a
knowledge base £, composed by the above ABox and
the definition of the Stack concept in the TBox, the

individual action a is an instance of the concept Stack
at the time interval 45, i.e. £ | Stack(iq,a).

4 THE CALCULUS

This section presents a calculus for the temporal con-
cept language. We first look for a normal form of con-

cexnpbaex —

(cex)ax, - cex, ifX,—{

p:(g:C) — (pog): C

o(X)) &. (Cn(<>(X,) %.. D)@X) —
O(Xl UXz) il URZ[X/ﬁ] (Cn D+[X/ii])

CnOX)®.D — ©OX)R. (CnD)

if C doesn’t contain variables

(cnD)ax
CaxX, if X:#1¢

Comment: X @Y returns the union of the sets X and Y,
where all the elements of Y occurring in X are renamed,
except for §; Z; is intended to be the expression Z where
the same renaming has taken place.

Figure 9: Nondeterministic rewrite rules to transform
an arbitrary concept into an equivalent existential con-
cept.

cepts, which will be useful for the subsumption and
instance recognition algorithms. Since the dimension
of the normal form of a concept can be exponential in
presence of concept disjunction, a way to compute an
effective normal form in the special case of absence of
concept disjunction is also devised. Section 4.1 consid-
ers the language without concept disjunction; section
4.2 considers the full language.

4.1 NORMAL FORM AND SUBSUMPTION

Let us consider in this section the restricted language
without concept disjunction. Every concept of the
restricted language in an expanded TBox can be re-
duced into an equivalent existential concept of the form:
O(X) R. (Q'@X'n...nQ"@X"), where each @’ is a
non-temporal concept, i.e. it does not contain neither
temporal quantifiers nor temporal qualifiers - nor con-
cept disjunctions. Figure 9 presents a set of rules for re-
ducing a concept C into the existential form (ef C'), once
concept names and substitutive qualifiers have been ex-
panded in C. A concept in existential form can be seen
as a conceptual temporal constraint network, i.e. a la-
beled directed graph (X,T¢, Q@X) where arcs are la-
beled with a set of arbitrary temporal relationships —
representing their disjunction - and nodes are labeled
with nontemporal concepts.

Proposition 1 (Existential Form) Every concept
can be reduced into an equivalent ezistential concept by
ap;:lymg the rules of figure 9, i.e. given a concept C,

= (ef C)v: for every interpretation I, every as-

stgnment V and every interval t.

Given a concept in existential form, the temporal com-
pletion of the constraint network is computed:

Definition 1 (Temporal Completion) The tem-
poral completion of a concept in existential form - the
Completed Existential Form, CEF - is obtained by se-
quentially applying the following steps:
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o (Closure) The transitive closure of the Allen temporal
relations in the conceptual temporal constraint network
is computed (see e.g. [van Beek and Cohen, 1990]).

o (parameter introduction) New information is added
to each node because of the presence of parameters, as
the following rules show (the ~» symbol is intended in
such a way that each time the concept expression in
the left hand side appears at a top level conjunction in
some node of the temporal constraint network then the
right hand side represents the concept expression that
must be conjunctively added to all the other nodes):

*g10...0%gn [0 flop]): C
~ *g10...0%gn: T.
1 1 2 2
*g1 O...0 gy | *g7 O...0 *gp,
~ *glo...oxgl | xg20...0%g3,.
*glo...oxglo f! [opl]l*gfo...o*gfno f’[op’]
~ *glo...oxgl: T N aglo...oxg? : T.

o (= introduction) New temporal constraints with the
“=" relation are introduced, if they are not already
present, for every variable declared in the constraint
network and for the § variable, by applying the following
rewrite rule:

OX)R.C —
OX)E@W =)z =2y =y)---.C

e (= collapsing) For each equality temporal constraint,
collapse the equal nodes by applying the following
rewrite rule:

OX) R (z = y). C — O(X\{¥}) Besy)- Clepn)
ifr#yandy#} o

Proposition 2 (Equivalence of CEF) Every con-
cept in ezistential form can be reduced into an equiva-
lent completed ezistential concept by applying the above
procedure.

The most relevant properties of a concept in CEF is
that all the admissible interval temporal relations are
explicit and the concept expression in each node is no
more refinable without changing the overall concept
meaning; this is stated by the following proposition.

Proposition 3 (Node Independence of CEF) Let
X, %, Q@X) be a conceptual temporal constrasint net-
work in its completed form (CEF); for all Q € Q and
for all C 2 Q then (X, %, (QNC)@X)T, # (X, T,
Q_@Y){,’, for every interpretation I, every assignment
V and every interval t.

Proof. The proposition states that the informa-
tion in each node of the CEF is independent from
the information in the other nodes. In fact, (X, 7,
(@neyex);, = (X, &, Q@X)f,', if the concept ex-
pression in one node implies new information in some
other node, since, for nontemporal concepts, adding in-
formation means restricting the concept in some way.

We examine the only two cases in which the information
stated in a node adds new information in some other
node, and we show that these cases are covered by the
completion rules.

i. Nodes related only by means of the equal relations.
The (= collapsing) rule provides to collapse two con-
temporary nodes conjoining the concept expressions of
each of them. Note that, thanks to the (Closure) rule,
all the possible equal temporal relations are made ex-
plicit.

ii. Time-invariant information. Every time-invariant
information should spread over all the nodes. Only
parametric features and the T concept have a time-
invariant semantics: by induction, we prove that the
only time-invariant concepts are T, xg; 0...0%g, : T,
*g10...0%gn | Ap1 0 ... 0 %py (With n,m > 1) or an
arbitrary conjunction of these terms. The (parameter
introduction) rule considers all the possible syntactical
cases of deduction concerning time-invariant concept
expressions. (=

As an example, we show the completed existential form
of the previously introduced Stack action:

Stack =
Olzyvwz2)
2 fi f)(y mi D)(v mi §)(w f §)(z 0 B)(y mi 2)
v miz)(wf z)(z (o,d,s) z)(v (=,s,si) y)
wmy)(z b y)(w mv)(z b v)(w miz)
(1 =Dz = D)y = Y = v)(w = w)(z = 2).
((xOBJECT2 : Clear-Block N x0BJECT1 : T)@zN
(*OBJECT1 : Clear-Block N x0BJECT2: T)@ynN
g*OBJECTIoDl | *0BJECT2)@v N
*0BJECT1 : Hold-Block M *0BJECT2: T)@Quw N

(*OBJECT1 : Clear-Block M +OBJECT2: T)@z)

As we have seen in section 2.1, a concept subsumes an-
other just in case every possible instance of the second
is also an instance of the first, for every time inter-
val. Concept subsumption in the temporal language
is reduced to concept subsumption between nontem-
poral concepts and to subsumption between temporal
constraint networks. A similar general procedure was
first presented in [Weida and Litman, 1992], where the
language for nontemporal concepts is less expressive —
it does not include features nor parametric features.
Algorithms to compute subsumption between nontem-
oral concepts — E; C E; - are well known, see e.g.
Hollunder et al., 1990].

Definition 2 (Variable mapping) A variable map-
ping M is a total function M : X ~— X such that
M(f) = §. We write M(X) to intend {M(X) |
X € X}, and M(T) to intend {(M(X) (R) M(Y)) |
(X (R)Y) e R} a

Definition 3 (Temporal Constraint subsump-
tion) A temporal constraint (X;(R,;)Y;) is said to
subsume a temporal constraint (X2(Rz)Y2) under a
generic variable mapping M - written (X;(R1)Y1) g
(Xz (Rz) Y2) - if M(Xl) = Xz, M(Yl) = Yz and
(R1)€ 2 (R2)¢ for every temporal interpretation £. O
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Proposition 4 (X1(R1)Y1) Ipq (X2(R2)Y2) if and
only if M(X,) = X2, M(Y1) = Y2 and the disjuncts
in R, are a superset of the disjuncts in R,.

Proof. Follows from the observation that the 13 tem-
poral relations are mutually disjoint and their union
covers the whole interval pairs space. m]

Definition 4 (Temporal Constraint Network
subsumption) A temporal constraint network (X},
T¢,) subsumes a temporal constraint network (X, Tg)
under a variable mapping M : X, »—»_72, written
(X1, 1) Ipq (X2, Ts), if (M(X1), M(R1))E 2 (X2,
Té,)¢ for every temporal interpretation £. (m]

Proposition 5 (Xl,Tél) :'M (Xz,’léz) iff there ez-
ist a variable mapping M : X, — X3 such that for
all X} 'Y"l € X, ezist X', Y € X, which satisfy
(Xi (R Y7) Ipq (XF° (RP™) ¥).

Proof. “< ” From the definition of interpretation of
a temporal constraint network, it is easy to see that
each assignment of variables V in the interpretation of
(X, ;) is also an assignment in the interpretation of
(M(Xz) M(T5)), since for all i,j (R}7)E 2 (RF"™)E.
“= ” Suppose that we are not able to find such a
mapping; then, by hypotheses, for each possible vari-
able mapping there exist some i, j such that (R}/)f 2
(R3"™)¢. So, for each variable mapping we can build
an mterpretatlon £* and an assignment V* such that
V* € (X3, B,)¢" and V* ¢ (M(X)), M(T&l))e But
this contradicts the assumption that (X 1,731) Im
(X2, Ts). a]

Definition 5 (S-mapping) A s-mapping from
a conceptual temporal constraint network (fl, T,
Q@X,) to a conceptual temporal constraint network
(Yg,ﬁg,Q@X ,) is a variable mapping S : X~ X,
such that the nontemporal concept labeling each node
in X, subsumes the nontemporal concept labeling the
corresponding node in S(X;), and (X;,7¢;) 3 s (X2,
Te,). a]

The last normalization procedure reduces the graph by
eliminating nodes with redundant information. This
final normalization step ends up with the concept in
the essential graph form, that will be the normal form
used for checking concept subsumption.

Definition 6 (Essential graph) The subgraph of
the CEF of a conceptual temporal constraint network
T = (X,,Q@X) obtained by deleting the nodes la-
beled only with time-invariant concept expressions —

with the exception of the f§ node - is called essential
graph of T (essT). (]

Proposition 6 (Essential Graph Reduction) Ev-
ery conceptual temporal constraint network in com-
pleted ezistential form can be reduced into an equiva-
lent essential graph, i.e. given a conceptual temporal
constraint network T, Tv, = (essT)v, for every in-

terpretation I, every assignment V and every inierval
t.

Definition 7 (Redundant Node) A node K in a
conceptual temporal constraint network (X, 76, Q@X)
is redundant if the network resulting by deleting it
is equivalent to the original one: (X \ K, Tl?\xv

Qex |7\ K)f,', = (X,T,Q@X )f,, for every interpreta-
tion Z, every assignment V and every interval t. m]

Definition 8 (Mapping-Redundant Set) A set K
of nodes in a conceptual temporal constraint network
(X, T, Q@X) is a mapping-redundant set if there exists
a s-mapping S from (K, —’R-|-E, Qﬁh?)f,, to (X\K,
-ﬁlf\?, Q_@?lf\'l?)%." such that VK; € K. S(K.) =
X; - IR e R. B Iy (Ki = X;).

Proposition 7 A node in an essential graph is redun-
dant if and only if it is in the mazimal - wrt set inclu-
sion - mapping-redundant set of the graph. Moreover,
the only other way to add redundant nodes to an essen-
tial graph is to add time-invariant nodes.

The following theorem states that subsumption is de-
cidable and provides a sound and complete procedure to
compute it: first reduce the subsumer and the subsumee
in essential graph form, then look for a s-mapping be-
tween the essential graphs by exhaustive search.

Theorem 1 (Concept subsumption) A conceptual
temporal constraint network Ty = (X, 7,, Q@X,)
subsumes a_conceptual temporal constraint network
T2 = (X2, B2, Q@X,) - T1 O Ty - iff there ezists
a s-mapping from the essential graph of T\ to the es-
sential graph of T.

Proof. “«" Follows from the soundness of TCN sub-
sumption, from the soundness of the algorithm for com-
puting the subsumption between nontemporal concepts
and from the semantics of the conceptual temporal con-
straint networks.

“= ” Suppose that such a s-mapping does not exist.
We can distinguish two main cases.

i) There is not a mapping M such that (X,,7,) 3 M

(Y;,-’IE). By adding redundant nodes to T3, we ob-
tain an equivalent conceptual temporal constraint net-

work T3 = (X3, T,,Q@X,). Let us consider the ex-
tended network in a way that there exists a variable

mapping M* such that (X,,7,) 3 Ime (7;,7_&;) Now,
for all poss1ble M?*, there is a node X} { € X, such that
M (X)) = X} w1th X3 ¢ X3 and Q 2 @), since ei-
ther Q} is not in a time-invariant node — whereas Qé
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(Cub)y@x —
p:(CuD) —
(GuG)nD -
O(X)R.(CuD) —

ceéX uDax

p:CuUp:D

(C1 nl_))u_(C;l'lD)_ _
O(X) R. CuUO(X) . D

Figure 10: Nondeterministic rewrite rules for comput-
ing the disjunctive form.

is in a time-invariant node — or @} is in the maximal
mapping-redundant set of T; - contradicting the hy-
pothesis that the mapping M does not exist. Since the
construction of M* allows for the existence of a unique
V8 for both networks, then we can build an instance of
T5 which is not an instance of T}.

ii) For each possible mapping M such that (X,,
R1) Ipq (X2, Tez) there will be always two nodes X
and X} such that M(X}) = XJ and Q} 2 @} Since,
from proposition 3, the concept expression in each node
is independent from any concept expression of the other
nodes, we cannot refine the concept expression @),
looking for a subsumption relationships with Q}. Be-
sides, Q! can not be eliminated - i.e. generalized to T -
from T}, since the conditions of proposition 7 hold. So,

we can build an instance of T, which is not an instance
of Tl .

Both cases contradict the assumption that 7 subsumes
T>. o

4.2 DISJUNCTIVE CONCEPTS

In this section we introduce the disjunction operator
and we show how to modify the calculus in order to
check subsumption. In the way of computing subsump-
tion, we need a normal form for concepts. The nor-
malization procedure is essentially the same as the one
reported in section 4.1. The figure 10 shows the rules
dealing explicitly with disjunction. Those, in addition
to the rules introduced in figure 9, reduce every concept
into an equivalent disjunctive concept of the form:

(O(X1) By Gy)Uu---u(O(Xs) Bn. Ga) U
HiU---UHp

where G; are conjunctions of concepts of the form
HI@X*, and each H does not contain neither temporal
quantifiers, nor temporal qualifiers, nor disjunctions.

Given a concept in disjunctive form, applying the tem-
poral completion rules showed in section 4.1 to each
disjunct, we end up with an equivalent concept in com-
pleted disjunctive form where the node independence
property is preserved. Then the essential graph form
is computed, obtaining a concept where each disjunct
does not contain time-invariant nodes. At this point,
we are able to compute the disjunctive normal form

8Since subsumption is computed with respect to a fixed
evaluation time, V maps the different occurrences of § to the
same interval; this justifies the choice that M(}) = §.

(dnf C).

Definition 9 (Disjunctive Normal Form) The
disjunctive normal form of a concept is computed start-
ing from its essential graph form and applying the fol-
lowing nondeterministic rewrite rules to each disjunct:

e (U introduction) Transform the conceptual tempo-
ral constraint network into an equivalent disjunction
of conceptual temporal constraint networks containing
only basic temporal relationships:

O(X) (X1 (R,S) X2)B.C — O(X)(X1 R X,)E.C U
O(X) (X, S X2)B.C

o (U elimination) If the disjunct is unsatisfiable - i.e.
the temporal constraint network associated with it is
inconsistent — then eliminate it. (m]

Proposition 8 (Equivalence of DNF) Every dis-
junctive essential graph can be reduced into an equiv-
alent disjunctive normal concept by applying the above
procedure.

A concept in disjunctive normal form can be seen as
the disjunction of several basic conceptual temporal con-
straint networks, where arcs are labeled with basic tem-
poral relationships and nodes are labeled with non-
temporal non-disjunctive concepts:

V...V VOoV...VO

Each basic conceptual temporal constraint network -
i.e. a disjunct of the normal form - has some inter-
esting properties, which are crucial for the proofs of
the theorem: temporal constraints are always explicit,
i.e. any two intervals are related by a basic temporal
relation; there is no disjunction, neither implicit nor
explicit, neither in the conceptual part nor in the tem-
poral part; the information in each node is independent
from the information in the other nodes. The following
theorem reduces subsumption between concepts in dis-
Junctive normal form into subsumption of disjunction-
free concepts, such that the results of theorem 1 can be
applied.

Theorem 2 (Concept subsumption) Let C = C,
U---UCp and D = Dy U---U D, be concepts in
disjunctive normal form; then C C D if and only
if Vi3j. C; C D;.

Proof. 7 Since it is easy to show that
C,U...uC,CD iff Vi.C;C D

we need only to prove the restricted thesis

¢G;cbhyu---ub, f G;CD,V...VC;C D,

"The proof of this theorem comes from an idea of Werner
Nutt.
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Every conceptual expression C; corresponds to an exis-
tential quantified formula with one free variable. More-
over, the matrices of such formulas are conjunctions of
positive predicates. Let us denote the formula corre-
sponding to a concept C; as C](z). The functionality
of feature concept expressions can be expressed with
a set F' of definite Horn clauses. The restricted thesis
holds - in the binary case - if and only if FU{C;”(a)} |
Dji(a) v Di(a), where a is a constant substituting the
free variable z and C;”(a) is obtained by skolemizing
the existential quantified variables. F U {C;"(a)} is
equivalent to a set of definite Horn clauses, which are
characterized by a minimal Herbrand model, say Hg.
Then:

FU{C(a)} k= Dj(a)V Dja) iff
Hs k= Di(a) v Dj(a)

Since we are talking of a single model, D} (a)V Dj(a) is
valid in Hg if and only if either Dj(a) or Dj(a) is valid
in Hg. (m}

4.3 INSTANCE RECOGNITION

Given a knowledge base L, an interval 1, an individual a
and a concept C, the instance recognition problem is to
test whether ¥ |= C(4, a), i.e. the inference task check-
ing if the individual is an instance of the concept at
the given time. We will only sketch here the procedure
for the instance recognition problem. The algorithm
first computes the most specialized concept ezpression
- MSC{¢ - for the individual a at the reference interval i.
The MSC} is a concept such that it instantiates the indi-
vidual at the interval i, i.e. ¥ |= MSC?(4, @), and it is the
most specific one, i.e. for every concept expression D
of the language satisfying £ |= D(i, a) then MSC? C D.
The procedure computing the MSC{ is a variant of the
well known abstraction procedure of concept languages
- see e.g. [Nebel, 1990; Lenzerini and Schaerf, 1991;
Donini and Era, 1992]. Even if we conjecture the com-
pleteness of the procedure computing the MSC¢, no for-
mal proof is available.

Given the most specialized concept of every individual,
the instance recognition problem can be reduced to a
subsumption test: £ |= C(i, a) if and only if MSC{ C C.

For example, the most specialized concept for the indi-
vidual action a at the reference interval i, with respect
to the ABox defined in section 3 is the following:

HSC?. = 0(21 To I3 T4 25)
(z1 0 )(x2 fi B)(z3mi ;)
(z3 f §)(z4 mi §)(z5 mi ).
((xOBJECT1 : Clear-Block)@z; N
*0BJECT1 : Hold-Block)@z3 M
*0BJECT1 : Clear-Block)@z4 N

(*OBJECT2 : Clear-Block)@z, N
(*0BJECT100N | x0BJECT2)@z;5)

Since MSC{ C Stack, the individual action a is an in-
stance of the concept Stack at the time interval i,.

5 CONCLUSIONS

We have shown in this paper a formalism for repre-
senting time, actions and plans in a uniform way. The
proposed temporal concept language allows for the rep-
resentation of actions in the style of Allen: an action
can have parameters, which are the ties with the tem-
poral evolution of the world, and an action is associ-
ated over time with other actions. An action taxonomy
based on subsumption can be set up, and it can play
the role of a plan library for plan retrieval tasks. From
the observation of the evolution of the world state, the
type of the involved actions can be understood, for plan
recognition purposes.

Currently, the language is able to express a plan as an
action having possibly different properties through time
- i.e. as a complez activity. In [Artale and Franconi,
1994] a decomposition operator is introduced to distin-
guish the different actions composing a plan. A plan
can be viewed as a hierarchical structure whose con-
stituent actions could be seen as its distinct decompos-
ing steps. Further research work within this approach
includes the treatment of temporally homogeneous, con-
catenable and countable concepts®. Homogeneity is use-
ful to characterize the temporal behavior of world states
[Artale et al., 1994]. The language can be successfully
extended in order to cope with problems characterized
by inertial - or persistent — properties. In this larger
framework, states can be represented as simple non-
temporal homogeneous and persistent concepts [Artale
and Franconi, 1994].

Acknowledgments

This paper is a revised and extended version of a work-
ing paper presented at two IJCAI-93 workshops [Ar-
tale and Franconi, 1993]. This work has been partially
supported by the Italian National Research Council
(CNR), projects “Sistemi Informatici”, “Pianificazione
Automatica” and “Robotica”. This research was partly
done while the first author was visiting IRST from Uni-
versity of Florence, Italy. We would like to thank Clau-
dio Bettini, Paolo Bresciani, Alfonso Gerevini, Werner
Nutt, Andrea Schaerf, Luciano Serafini, Achille C.
Varzi and two anonymous referees. All the errors of
the paper are, of course, our own.

References

[Allen, 1991] James F. Allen. Temporal reasoning and
planning. In James F. Allen, Henry A. Kautz,
Richard N. Pelavin, and Josh D. Tenenberg, editors,
Reasoning about Plans, chapter 1, pages 2-68. Mor-
gan Kaufmann, 1991.

8A concept is homogeneous if its instances at some in-
terval are also instances at the subintervals; a concept is
concatenable if its instances at two meeting intervals are
also instances at the union interval; a concept is countable
if its instances at some interval are not instances at the
overlapping intervals.



14 A. Artale and E. Franconi

[Artale and Franconi, 1993) Alessandro Artale and En-
rico Franconi. A unified framework for representing
time, actions and plans. In F. D. Anger, H. W. Gues-
gen, and J. van Benthem, editors, Workshop Notes of
the IJCAI Workshop on Temporal and Spatial Rea-
soning, pages 193-217, Chambery, France, August
1993. Also in the Workshop Notes of the IJCAI-93
Workshop on Object-Based Representation System;
a shorter version appears in the Workshop Notes of
the Italian 1993 Workshop on Automatic Planning,
Roma Italy, September 1993.

[Artale and Franconi, 1994] Alessandro Artale and En-
rico Franconi. Time, actions and plans representation
in a description logic. International Journal of Intel-
ligent Systems, 1994. To appear.

[Artale et al., 1994] Alessandro Artale, Claudio Bet-
tini, and Enrico Franconi. Homogeneous concepts
in a temporal description logic. Forthcoming, 1994.

[Artale, 1994] Alessandro Artale.  Rappresentazione
di Tempo ed Azioni e Ragionamento Tassonomico
per Object-Oriented Databases nel Contesto dei Lin-
guaggi Terminologici. PhD thesis, University of Flo-
rence, Italy, February 1994. (in italian).

[Bettini, 1992] Claudio Bettini. A formalization of
interval-based temporal subsumption in first order
logic. In Workshop Notes of the ECAI Workshop
on Theoretical Foundations of Knowledge Represen-
tation and Reasoning, Vienna, Austria, August 1992.

[Bettini, 1993] Claudio Bettini. Temporal Eztensions
of Terminological Languages. PhD thesis, Computer
Science Department, University of Milan, Italy, 1993.

[Devanbu and Litman, 1991] Premkumar T. Devanbu
and Diane J. Litman. Plan-based terminological rea-
soning. In Proc. of the 2 ™® International Conference
on Principles of Knowledge Representation and Rea-
soning, pages 128-138, Cambridge, MA, May 1991.

[Donini and Era, 1992] Francesco M. Donini and An-
gelo Era. Most specific concepts for knowledge bases
with incomplete information. In Proc. of CIKM-92,
pages 545-551, 1992.

(Halpern and Shoham, 1991] J. Y. Halpern
and Y. Shoham. A propositional modal logic of time
intervals. Journal of ACM, 38(4):935-962, 1991.

[Heinsohn et al., 1992] Jochen Heinsohn, Daniel Ku-
denko, Bernhard Nebel, and Hans-Jiirgen Profitlich.
RAT: representation of actions using terminological
logics. Technical report, DFKI, Saarbriicken, Ger-
many, November 1992.

[Hollunder et al., 1990] B. Hollunder, W. Nutt, and
M. Schmidt-Schau. Subsumption algorithms for
concept description languages. In Proc. of the 9
ECALI pages 348-353, Stockholm, Sweden, 1990.

[Kautz, 1991) Henry A. Kautz. A formal theory of plan
recognition and its implementation. In James F.
Allen, Henry A. Kautz, Richard N. Pelavin, and
Josh D. Tenenberg, editors, Reasoning about Plans,
chapter 2, pages 69-126. Morgan Kaufmann, 1991.

(Lambrix and Ronnquist, 1993) Patrick Lambrix and
Ralph Ronnquist. Terminological logic involving
time and evolution: A preliminary report. In Pro-
ceedings of ISMIS-93, 1993.

[Lenzerini and Schaerf, 1991] M. Lenzerini and
A. Schaerf. Concept languages as query languages.
In Proc. of AAAI-91, pages 471-476, Anaheim, CA,
1991.

[Lifschitz, 1987] Vladimir Lifschitz. On the semantics
of STRIPS. In The 1986 Workshop on Reasoning about

Actions and Plans, pages 1-10. Morgan Kaufman,
1987.

[McCarthy and Hayes, 1969] J. McCarthy and P. J.
Hayes. Some philosophical problems from the stand-
point of Artificial Intelligence. In B. Meltzer and
D. Michie, editors, Machine Intelligence, volume 4,
pages 463-502, Edinburgh, UK, 1969. Edinburgh
University Press.

[Nebel, 1990] B. Nebel. Reasoning and Revision in
Hybrid Representation Systems, volume 422 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag,
Berlin, Heidelberg, New York, 1990.

[Schild, 1993] Klaus D. Schild. Combining terminolog-
ical logics with tense logic. In Proceedings of the
6% Portuguese Conference on Artificial Intelligence,
EPIA’93, October 1993.

[Schmiedel, 1990] A. Schmiedel. A temporal termino-
logical logic. In Proc. of AAAI-90, pages 640-645,
Boston, MA, 1990.

[Song and Cohen, 1991] Fei Song and Robin Cohen.
Temporal reasoning during plan recognition. In Proc.
of AAAI-91, pages 247-252, Anaheim, CA, 1991.

[van Beek and Cohen, 1990] P. van Beek and R. Co-
hen. Exact and approximate reasoning about tempo-
ral relations. Computational Intelligence, 6:132-144,
1990.

[Venema, 1990] Yde Venema. Expressiveness and com-
pleteness of an interval tense logic. Notre Dame Jour-
nal of Formal Logic, 31(4):529-547, Fall 1990.

[Weida and Litman, 1992] Robert Weida and Diane
Litman. Terminological reasoning with constraint
networks and an application to plan recognition. In
Proc. of the 374 International Conference on Prin-

ciples of Knowledge Representation and Reasoning,
pages 282-293, Cambridge, MA, October 1992.

[Weida and Litman, 1994] Robert Weida and Diane
Litman. Subsumption and recognition of heteroge-
neous constraint networks. In Proceedings of CAIA-
94, 1994.



15

Proofs in context

Giuseppe Attardi
Dipartimento di Informatica
Universita di Pisa
Corso Italia, 40
I-56125 Pisa, Italy
attardi€@di.unipi.it

Abstract

An analysis of some formal proofs appeared
in recent literature dealing with multiple the-
ories, reveals that they are not always accu-
rate: soine steps are not properly accounted
for, lifting is use improperly, extra logical
constructions or unnecessary assumptions are
made. Many such problems appears due to
the involved mechanisms of reflection. We
show that proof in context can replace the
most common uses of reflection principles.
Proofs can be carried out by switching to
a context and reasoning within it. Context
switching however does not correspond to re-
flection or reification but involves changing
the level of nesting of theory within another
theory. We introduce a generalised rule for
proof in context and a convenient notation
to express nesting of contexts, which allows
us to carry out reasoning in and across con-
texts in a safe and natural way.

1 INTRODUCTION

A general notion of relativised truth can be useful for
reasoning in and about different theories in a formal
setting. For example to reason about the reasoning of
different agents, to model temporal evolution of knowl-
edge, to split a large knowledge base into manageable
chunks or microtheories that can be related to each
other by means of lifting axioms.

There are several approaches to the formalization
of a notion of relativised truth: by means of a
predicate expressing “provability” like for example
PR(T,P) in (Weyhrauch 80) and demo(T,P) in
(Bowen-Kowalski 82), or with a notion of truth in
context like for example ist(c,p) in (Guha 91, Mc-
Carthy 87, McCarthy 93, Buva&-Mason 93) and p° in
(Shoham 91), or with a notion of entailment from a set
of assumptions like in( P, vp) (Attardi-Simi 84, Simi 91,
Attardi-Simi 93).

Maria Simi
Dipartimento di Informatica
Universita di Pisa
8imi@di.unipi.it

Most of these are syntactic approaches where theo-
ries can be modeled as collections of reified sentences
or sentence names in First Order Predicate Calculus.
The object theory is extended with a meta-theory con-
sisting of sentences about sentences. The relation be-
tween general validity and truth relativised to a sub-
theory is usually expressed by means of a pair of reflec-
tion/reification rules. For example, (Kowalski-Kim 91)
use the following rules:

T+P . ‘

pr - demo(T, P) (Reificationl)
F P

pr F demo(T, P) (Reflection1)

T+HP

which say that if formula P is derivable from the set
of sentences T, then demo(T, P) is derivable in the
meta-theory from theory pr and vice versa, where pr
is a theory containing a suitable axiomatisation of the
demo predicate.

Unfortunately carrying out proofs dealing with mul-
tiple theories is not simple. When reasoning about
reasoning, one often needs to carry out some proof
steps within a different theory from the current one
and then to lift the conclusions back into the original
theory. The deductive rules required to carry out these
steps involve either reflection principles or some other
notion of proof in context. Reflection principles have
to be carefully restricted in order to avoid paradoxes.
Such restrictions however limit significantly their use-
fulness and also defeat intuition while building proofs
in context. Standard formulations of the reflection
rules also assume explicit knowledge of the theory one
reasons about. This is not always the case for theo-
ries representing agents or for theories which refer to
each other, as those required for expressing common
knowledge.

To illustrate some of the subtle issues involved when
performing proofs composed of subproofs in different
contexts, we examine two examples taken from the
recent literature.
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The first one is a solution to the three wise men puzzle
by Kowalski and Kim presented in (Kowalski-Kim 91)
where a rule of reification is used to lift a conclusion
from the object level to metalevel theory.

The second example was used by John McCarthy (Mc-
Carthy 93) to illustrate the power of “lifting axioms”,
which allow extrapolating facts from one theory to an-
other and transforming them at the same time into a
different format. Even though no formal proof theory
was provided, the example was meant to suggest the
kind of proofs one would like to be able to perform.
In this case, things are complicated by the fact that
the proof is carried out in a natural deduction setting,
80 there are pending assumption when switching from
one context to another.

The three approaches examined in the paper use three
slightly different notations for relativized truth, whose
correspondence is shown below:

demo(T,P) Kowalski
ist(T, P) McCarthy
in(P,T) Attardi and Simi

After critically examining the examples, we will dis-
cuss the forinulation and use of the reflection rules
and argue that the meaning of context switching in
a natural deduction proof is just nesting or unnesting
of contexts. A notation is introduced to write more
readable proofs with context switching according to
this semantics.

2 DIFFICULTIES WITH PROOFS
IN CONTEXT

2.1 INCOMPLETE THEORIES

All standard formulations of the reflection rules re-
quire the theory from which one reflects to be com-
pletely specified and expressed by means of a term in
the meta-language. For instance the conclusion T - P
from Reflection! would not be meaningful unless T was
known.

While there are many useful finite theories that one
can handle with such rules, most interesting theories
turn out to be infinite or only partially specified. For
example theories involving axiom schemata or theo-
ries which involve other theories in a mutually recur-
sive fashion. A particular case of the latter are theo-
ries used to express common knowledge among several
agents, where not only certain facts are known to ev-
erybody, but also everybody is aware that everybody
knows them, and so on.

In order to deal with incomplete theories one must in-
troduce names for theories and express what is known
about them by means of assertions.

For instance one could assert:
demo(T, P)
demo(T, Q)

However, if one wanted to conclude, given P,Q + R,
that

demo(T, R)

reflection would not be applicable, since theory T in
not known. As we will see later, there could be other
means to achieve this conclusion.

When mutually recursive theories are allowed in our
language, one must account for them in the seman-
tics of the logic. One way to do so is to use non well
founded sets (Aczel 88) as denotation for theories and
rely on Barwise solution lemma to ensure that solu-
tions to the recursive equations exist.

A different approach is the one pursued in the theory
of viewpoints (Attardi-Simi 93), where viewpoints de-
note recursive set of sentences and the interpretation
of in sentences is done in a layer by layer fashion so
as to properly account for paradoxical self referential
sentences.

Mutually recursive theories appear for instance in the
formulation of the three wise men puzzle.

2.1.1 The three wise men puzzle

The statement of this well known puzzle is the follow-
ing (Kowalski-Kim 91).

A king, wishing to determine which of his
three wise men is the wisest, puts a white spot
on each of their forheads, and tells them that
at least one of the spots is white. The king ar-
ranges the wise men in a circle so that they
can see and hear each other (but cannot see
their own spots) and asks each wise man in
turn what is the colour of his spot. The first
two say that they don’t know, and the third
says that his spot is white.

We analyse the solution this puzzle presented in
(Kowalski-Kim 91) in the framework of the amal-
gamated logic of Bowen and Kowalski (Bowen-
Kowalski 82), which is based on a meta-level predicate
demo which represent provability, and reflection rules
that link the meta-level and the object level.

The reflection rules used there are conservative and
safe: actually no additional facts can be proved which
could not be derived from the axiomatisation of demo.

The knowledge of each wise man is defined as a theory
which includes all the facts that are considered com-
mon knowledge. This is done by “initializing” those



theories with facts of the form demo(wisey, ...), where
wiseg is meant to represent the theory containing the
common knowledge.

Moreover each theory wise; is equipped with addi-
tional “rules” to enable each wise man to perform his
reasoning. In particular:

demo(T, P) A agent(T) = P (Conf)
a “confidence” axiom, which makes any agent to be-
lieve the conclusions of other agents he’s aware of; and
three axioms for common knowledge:

demo(wisep, P) A agent(T') = demo(T, P)(Comm1)

agent(wisep) (Comm?2)

demo(wisep, P A agent(T') = demo(T, P))(CommsS)

The last one is used to obtain that everybody knows
that everybody knows ... P, for any fact P which is
common knowledge.

The proof is performed in two stages: the first part
of the reasoning is done in theory wisey to prove
white; V whiteg (i.e. either the second or the third
man has a white spot on his head). This conclusion
is then lifted to wisez so that whites can be proved
there.

However wiseg is not an explicit theory, therefore reifi-
cation could not be used to lift the conclusion into
wises. A workaround for this problem is to build a
theory on purpose (let’s call it WISEy) from the facts
of type demo(wiseg,z) present in wises. This step
remains however external to the logic.

Once white; Vwhites has been proved in WIS Ey, this
fact is lifted to wises to complete the proof. The au-
thors justify this lifting step as an application of rule
Reificationl.

However Reification does not appear to be used prop-
erly here. The conclusion reached in WISEy can in-
deed be lifted to wises, but for a different reason.
Since WISE, contains those facts z for which wises
knows demo(wisey, z), then wises can repeat the same
proof himself, nested within demo(wisey,...), by re-
peated applications of the rule

demo(T,P),P}+ Q
demo(T, Q)

(Proof in context)

which is a valid principle in most systems.
This sequence of steps can be generalised and ab-
stracted in the following rule:
{z | demo(T,z)} F A
F demo(T, P)

(Generalised proof in contezt)

which can replace reflection in many proofs.
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There is however a more serious problem with the for-
malisation of the puzzle.

In order to ensure that WISEy is a finite set, the
authors use Comm3, a strong common knowledge ax-
iom. Comm3 allows adding a single finite schema to
WISE, (i.e. PAagent(T) = demo(T, P)) rather than
an infinite set of formulae generated recursively by a
more standard common knowledge axiom like:

demo(wiseg, P) A demo(wiseg, agent(T)) =
demo(wiseg, demo(T, P))

But the resulting formulation of common knowledge,
forbids the agents to have private beliefs, since any-
thing that is believed would be believed to be believed
by anybody else. For example the second wise inan
could reason that since the first wise man spot is white
then the first wise man must know. However, when the
first man says “I do not know”, he could logically de-
rive anything, or at least become very confused. For-
mally, in theory wise;:

(1) white,
(2) agent(wisey)

(after all he can see it!)
(Comm2, Cony)

(3) P Aagent(T) = demo(T, P) (CommJ)
(4) agent(wise;) (Comm2, Con)
(5) demo(wise,,white;) (1, 4, 3)

(6) ~demo(wise;,white;) (Comm2, Conf)
The three wise men puzzle is also tackled in
(Nakashima, Peters, Schiitze, 1991) where a model for
the representation of common knowledge is presented
in the framework of situation theory.

Oddly, the authors claim that with a static (declar-
ative) formalization of problems involving common
knowledge in their language it is impossible to build
proofs by contradiction, which is the most natural style
of reasoning to solve this puzzle. They argue that no
private knowledge is possible with their static model
and this leads them to develop a procedural model for
the representation of common knowledge.

Later we will present a solution to the three wise men
puzzle, where common knowledge is grouped in a sin-
gle theory and lifting rules are provided for each agent
to access it. The advantages are a more compact state-
ment of the problem which does not rely on “ad hoc”
initialization or on the fly construction of theories by
extra logical machinery and a proof which is more care-
fully accounted for; moreover the formulation of com-
mon knowledge is not so strong as to prevent private
knowledge and the solution does not make use of the
axiom of confidence which is altogether unnecessary.

Several solutions to the three wise men puzzle have
appeared in the literature, some of which quite reason-
able; so our focus here is in the search for an adequate
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proof system within a very expressive logic enabling
us to carry out proofs with multiple theories in both a
sound and intuitive way.

2.2 LIFTING RULES AND NATURAL
DEDUCTION

In performing proofs involving multiple theories, one
would like to be able to move easily from one the-
ory to another, reason within a theory with traditional
means, for instance by natural deduction, and then to
carry outside some of the consequences obtained.

One must be careful however, not to leave behind in
an innermost context essential assumptions and not to
extrapolate to an unrelated context.

We use of the following example, presented in (Mc-
Carthy 93), to illustrate these issues.

A fixed theory, called AboveT heory, is used to rep-
resent the basic facts about the blocks world which
do not depend on situations. One would like to make
these facts and their consequences available, in the ap-
propriate form, in another theory where situations are
accounted for. The correspondence between these the-
ories is established by axioms written in a certain con-
text c.

We use here McCarthy’s notation:

c: ¢
to express that statement ¢ is true in the context c.
Context AboveT heory:

(1) Vz,y on(z,y) = above(z,y)
(2) Vz,y, z above(z,y) A above(y, z) = above(z, 2)

Context c:

(3) Vz,y,s on(z,y,s) & ist(c(s), on(z,y))
(4) Vz,y, s above(z,y, s) « ist(c(s), above(z, y))
(5) Vp, s ist(AboveT heory,p) = ist(c(s),p)

An outer context, cp, is also needed for lifting facts
deduced in AboveT heory or c, together with the fol-
lowing lifting axioms:

(6) co : ist(AboveT heory, z) iff AboveTheory : z
(7) co:ist(c,z) iffc: z

The example consists in showing that, assuming:
co : ist(c,on(A, B, So))

one can prove:
co : ist(c, above(A, B, Sp))

The proof goes as follows:

(8) co : ist(c,on(4, B, So))
(9) c: on(A, B’ SO)

(assumption)
(7, 8)

The outer context ¢ and axiom (7) are needed to lift
an assumption into ¢. Context ¢y plays the role of
a special context, where the the facts in other useful
theories are lifted to do the necessary reasoning.

(10) c:ist(c(So),on(A, B)) (9 and 3)
(11) ¢(So) : on(A, B) (10, entering ¢(So))

This last step, apparently, implies a very strong reflec-
tion, allowing a fact to be lifted P in a context ¢’ from
the fact that ist(c’, P) holds in another context. But
the indentation warns us that this is done in the con-
text of some assumptions we should not forget about!

(12) c:ist(c(So),Vz,y on(z,y) = above(z,y))

In order to prove the above line in ¢ the fact
ist(AboveT heory,Vz,y on(z,y) = above(z,y)) should
be lifted into c in order to exploit (5). It is not enough
to lift it into co. This really requires a strong ver-
sion of reification, or rather, as we will argue later, an
additional axiom.

(13) ¢(So) : Vz,y on(z,y) = above(z,y)
(14) ¢(So) : above(A, B) (11 and 13)
(15) c: ist(c(So), above(A, B))

A strong reification, apparently. This can be justified
only because c is the “enclosing box” in the natural
deduction proof; lifting in any context would not be
reasonable.

(16) c: ist(c(So),above(A, B)) = above(A, B,So) (4)
(17) c: above(A, B, Sp) (15 and 16)
(18) Co iSt(C, above(A, B’ SO)) (7)

3 A METHOD FOR PROOFS IN
CONTEXT

In order to discuss the problems and subtle issues
hinted in the previous sections, we introduce a for-
mal deductive system for proofs in contexts developed
in connection with the theory of viewpoints (Attardi-
Simi 93).

Viewpoints are sets of reified sentences and the expres-
sion in("P', vp) means that a sentence P is entailed by
the set of assumptions represented by vp.! The theory
of viewpoints is a reflective first order theory allowing

'More precisely ‘P’ is a term denoting sentence P, vp
a viewpoint constant, function or set of reified sentences,
and in('P’,vp) is true at a model M iff P is true in any
model of the sentences denoted by vp which is “coherent”
with M, i.e. interprets vp as M does.



us to deal with implicit viewpoints (viewpoint con-
stants and functions). A complete semantic account
of viewpoints is presented in (Attardi-Simi 93).

3.1 PROOF THEORY

The proof theory for viewpoints can be conveniently
presented in the style of natural deduction.

3.1.1 Inference rules for classical natural
deduction

The notation vp F P puts in evidence the pending as-
sumptions in rules where some of the assumptions are
discharged, like for instance the rules of implication
introduction and negation introduction. When the
pending assumptions are the same in the antecedent
and consequent of a rule they are left implicit.

The rules for natural deduction are quite standard.
For example:

P,Q
PAQ

PAQ
P,Q

are the rules for conjunction introduction and elimina-
tion, respectively, and

wpU{P}F Q PP=Q
wrp=gq &P Q

(A1) (A E)

(= E)

are the rules for implication introduction and elimina-
tion. The full set of classical rules used is presented in
the appendix.

3.1.2 Metalevel axioms and inference rules

The behaviour of in is characterized by the following
axioms and inference rules, which allow classical rea-
soning to be performed inside any viewpoint.

The first axiom asserts that all the sentences con-
stituent of a viewpoint hold in the viewpoint itself,
while the second establishes a principle which could
be called positive introspection, if we choose an epis-
temic interpretation for in.

in(P', {..../P",..}) (Az1)

in("P’,vp) = in('in('"P', vp)’, vp) (Az2)

Moreover we have a meta-inference rule for each clas-
sical natural deduction inference rule. For example:

in("P', vp),in('Q’, vp)
in('P A Q',up)

in((PAQ',vp)
in("P',vp),in('Q’, vp)

(Meta A I)

(Meta A E)
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in("P’,vp) F in('Q’, vp)

in(P > B',vp) (Meta = 1)
in("P',vp),in('P = Q',vp)
(0" 9] (Meta = E)

The full set of meta-inference rules is presented in the
appendix.

3.1.3 Reflection rules

The following are the reflection and reification rules
for the theory of viewpoints: they are more powerful
than those of (Bowen-Kowalski 82), but still safe from
paradoxes as discussed in (Attardi-Simi 91).

Fin('P',v .
v’:pl v prz - ?) (Reflection)

vptkc P . .
#ﬁvp) (Reification)

The notation ¢ stands for “classically derivable” or
“derivable without using the reflection rules”. Reifi-
cation is a derived inference rule; in fact any proof
at the object level can be completely mirrored at the
metalevel using the meta-level inference rules. This
can be proved by induction on the length of a proof
steps, with the base case being provided by Azl.

3.1.4 Derived theorems and rules

As a consequence of reification and Az!, we have:

Theorem 1 in("P’, vp), for any logical theorem P and
viewpoint vp.

As a consequence of the strong version of reflection,
we have:

Theorem 2 in('P',{Q'}) = (Q = P)
Moreover we can prove the following derived rule:

in("P',vp),Ptc Q
in(Q’, vp)

which generalises to:

{zlin(z,vp)} Fc P
Fin("P', vp)

(Proof in context)

(Generalised proof in context)

The antecedent of the rule corresponds to the condi-
tion that in order to exploit a proof carried out in an-
other context one must know at least that the premises
of the proof are in that context.

Moreover proofs in contexts can be performed at any
level of nesting.
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3.1.5 Entering and leaving contexts

Another useful mechanism to build proofs in context
is the ability to switch contexts and perform natural
deduction proofs within viewpoints. The safest way to
interpret context switching in the framework of natural
deduction proofs is simply to go one level deeper or
shallower in nesting, or in other words unnesting and
nesting.

This means for instance that in order to prove a sen-
tence of the form
in('P',vp) (Az1)
one may pretend to move inside vp;, and perform a
proof using those facts which are present in vp;, i.e.
are of the form in('Q’, vp; ). If the formula P is itself of
the form in('R’, vpz) one will have to one level deeper
to prove R by using this time just facts of the form
in('in('S’, up2)’, vp).
In their formalization of contexts (Buva&-Mason 93)
BuvaZ and Mason propose rules for context switching
which correspond to this idea, and introduce the nota-
tion of sequences of contexts to represent the nesting of

several contexts. The rule they present is bidirectional
and reads as follows:

ankl ¢

Frist(kr, @ (9
The index k represents a sequence of contexts, each one
nested within the previous, and the rule expresses that
a statement about the truth of ¢ in a series of nested
contexts k can be turned into the fact ¢ holding in the
series of contexts k * k;. Keeping track of the level of
nesting is crucial for the correctness of the rule.

Later we will provide safe rules for importing and ex-
porting facts in a context.

4 A PROOF METHOD AND
NOTATION

Our proofs will become more readable and intuitive
with the aid of a graphical notation, which emphasises
the boundaries and nesting of contexts. The notation
we introduce is an extension of the box notation intro-
duced by Kalish and Montague (Kalish-Montague 64).

4.1 RULES FOR CLASSICAL NATURAL
DEDUCTION

We show here some examples of proof schemas for clas-
sical natural deduction.

The following schema corresponds to the rule of = I
and should be read as: “if assuming P you succeed in
proving Q, then you have proved P = Q".

P (assum.)

P=Q

Similarly, the schema corresponding to the inference
rule of - I'is the following:

P (assum.)
-Q

-P

The box notation is useful to visualise the scope of the
assumptions made during a natural deduction proof.
In performing a proof within a box one can use facts
proved or assumed in the same box or in enclosing
boxes. Facts cannot be exported from within a box to
an enclosing or unrelated box.

4.2 RULES FOR PROOFS IN CONTEXT

For proofs in context we introduce a different kind
of box, with a double border, to suggest boundaries
which are more difficult to traverse. The double box
represents a viewpoint, i.e. a theory, whose assump-
tions, if known, are listed in the heading of the box. If
the assumptions are not known the name of the view-
point is shown. The only two rules for bringing facts
in and out of a double box are the rules corresponding
to unnesting and nesting.

Importing a fact in a viewpoint:
in("P', vp)
l_vr

P

I
“ (unnesting)

Exporting a fact from a viewpoint:
_vp

|
B
in("P', vp)

The only way to import a fact P in a double box vp
is to have a statement in("P’,vp) in the environment
immediately outside the box. Symmetrically you can
obtain in("P’, vp) in the environment immediately out-
side a double box vp if P appeara in a line immedi-
ately inside the double box (not inside a further single

(nesting)




or double box within the double box). Note that to
import a fact in nested double boxes an appropriate
number of crossing double lines must be justified.

According to Azl, the assumptions of a viewpoint can

also be used inside the viewpoint:
{P,... P}
B,...,P,

Introducing in, in the case of explicit viewpoints:

{P,.../P}

ER—

in("P',{'P|,.../P.})
The meta-inference rules justify the possibility of car-
rying on regular natural deduction proofs within a
double box. For example the Meta - I inference rule,

for negation introduction in context, justifies the fol-
lowing deduction schema:

vp

in('-P’,vp)

which is just a combination of the schemas introduced
above for classical negation introduction and nesting.

Despite the appearances, the justification for this
schema is not obvious and it is worth elaboration. The
above schema is valid as long as the following deduc-
tion schema is valid in the environment outside the
box:

in("P’, vp)
in('Q’,vp)

il‘l("!.é;, vp)
in('~P’, vp)

(ass.)

with the restriction that only facts of the form
in(...,vp), in addition to the assumption, are allowed
in the proofs of Q and its negation within vp. In fact
the only way to import facts in the double box is by
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unnesting.
Let us therefore suppose that only the facts:

in('P{,vp)
in('Py, vp)
where used. Then it is also a fact that
in(PAPLA...APg,vp) Fin('QA-Q',vup)

But then, by the sound inference rule of Meta - I, we
can derive

in('~«(PAP,A...AP),up)
and, since we also have
in('PiA...A Py, vp)
we can obtain, by proof in context:
in('-=P', vp)

So this schema provides us a mean to carry out proofs
by contradiction, as were sought by Nakashima, which
we will use in the solution of the three wise men puzzle.

4.3 THE LIFTING EXAMPLE REVISITED

Exploiting the proof method and notation just intro-
duced we can present a rational reconstruction of Mc-
Carthy’s example, filling in some assumptions which
where missing in the original version. To simplify
the notation, from now on we will drop the quota-
tion marks used to represent meta-level sentences. The
statement of the problem is summarised in Figure 1.

The lifting axiom (1) was missing in the sketch of proof
presented by McCarthy (McCarthy 93) but it is nec-
essary in order to lift

in(Vz,y on(z,y) = above(z,y), AboveT heory)

from ¢ to ¢ where it can be exploited by axiom (6).
Without this additional assumption step (10) below
could not be accounted for by any sound rule, produc-
ing a case of improper lifting.

The full proof appears in Figure 2.

Generalising from this example, we conjecture that, in
any sound system for proof in context, the only way
to transfer facts between two unrelated contexts is to
exploit lifting axioms in a context which is external to
both of them.

Let us call an autolifting statement a sentence in a
theory T} which enables to lift into T all or a group
of facts from another theory T>. An example of au-
tolifting could be the statement Vp in(p, T2) = p. For
instance, we might want to use a single axiom within
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o -]
(1) Vp in(p, AboveT heory) = in(in(p, AboveT heory),c)
AboveT heory

(2) Vz,y on(z,y) = above(z,y)
(3) Vz,y, z above(z,y) A above(y, z) = above(z, 2)

C

(4) Vz,y,s on(z,y, s) ¢ in(on(z,y),c(s))
(5) Vz,y, s above(z,y, 8) > in(above(z,y),c(s))
(6) Vp, s in(p, AboveT heory) = in(p, c(s))

Figure 1. Statement of the lifting problem
o
(7) in(on(A, B, So),c) (assumption)
c
(8) on(A, B, So) (unnesting, 7)
(9) in(on(A, B),c(So)) (8 and 4)
(10) in(Vz,y on(z,y) = above(z,y), AboveT heory) (2, nesting, 1, unnesting)
(11) in(Vz,y on(z,y) = above(z,y),c(So)) (proof in context, 6 and 10)
[ ] <o)
(12) on(A, B) (unnesting, 9)
(13) Vz,y on(z,y) = above(z,y) (unnesting, 11)
(14) above(A, B) (proof in context, 12 and 13)
Ce——xrrr—mrrers —
(15) in(above(A, B),c(So)) (nesting, 14)
(16) in(above(A, B),c(So)) = above(A, B, Sp) (instance of 5)
(17) above(A, B, Sp) (proof in context, 15 and 16)
(18) in(above(A, B, Sp), )

Figure 2. Proof of the lifting problem



context ¢ of McCarthy’s example, to enable to transfer
there all the facts from AboveT heory. This however
seems to be possible only when T} is an outermost con-
text of T3, so that a fact p in T, can be exported by
nesting into T'1.

We conjecture that, if 7 and T> are not related (as
the case of ¢ and AboveTheory in the example) no
autolifting is possible in any reasonable formal system
for proof in context. Obviously it is possible to assert
in T; individual statements taken from T3, but this
would not provide the ability to transfer wholesale a
theory into another, which is an essential feature of a
general mechanism of contexts.

4.4 THE THREE WISE MEN REVISITED

With the tools just developed, we are able to present
a solution to the three wise men puzzle in a fairly
straightforward way. Notice that there is no need for
axioms like confidence or wiseness used in other solu-
tions. The following viewpoints are used.

wise;: viewpoint of the first wise man

wisey: viewpoint of the second wise man

wisez: viewpoint of the third wise man

CK:  viewpoint including the common knowledge.

The predicate white; means the color of the spot of
wise man i is white. The common knowledge view-
point is shown in Figure 3.

Two axioms, external to the CK and wise men view-
points are needed for the wise men to obtain the com-
mon knowledge.

(1) Vz in(z,CK) =
in(z,wise;) A in(z,wisez) Ain(z, wises)

(2) Vz in(z,CK) =
in(in(z, wise;) A in(z, wisez) A in(z, wises), CK)

Axioms (1) and (2) provide a proper account of com-
mon knowledge, allowing to derive the commonly
known facts in any viewpoint, no matter how nested.
In particular axiom (2) is used to achieve the appropri-
ate level of nesting in CK, axiom (1) to lift from the
CK viewpoint to any other viewpoint. The details of
the derivation of common knowledge are omitted from
the proof.

We can formally account, as shown in Figure 4, for
the reasoning of the third wise man after the first and
second one have spoken. The third wise man is in fact
able to prove that his spot is white.

A common approach to the representation of nested
beliefs is to introduce explicitly a number of different
theories according to the different views that an agent
has of other agents. In the three wise men puzzle we
would have the theory that wises has about wises,
the theory that wises has about the theory that wise;
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has about wise;, ...and so on. The construction of
tower of theories, one being “meta” for the one below,
is what justifies the use of reflection and reification
principles to transfer information between them.

It seems to us very unnatural to be forced to conceive
from the beginning an appropriate number of theo-
ries according to the number of agents and the nesting
level of the reasoning which is required: in this sim-
ple puzzle, which requires a nesting level of three, one
should theoretically conceive of 27 different theories
(even without considering the evolution of time).

Our solution is not radically different but, we believe,
more natural. The nesting of viewpoints implicitly
takes care of the different perspectives.

5 CONCLUSIONS

We have shown that proofs in contexts are difficult by
pointing out delicate or unclear steps in proofs found
in the literature. We presented our own, hopefully
correct, version of the same proofs. Paradoxically, if
our solution were wrong, we would have made this
point even stronger.

The constructive part of this paper aims at providing
a proof method for checking proofs in context when
implicit contexts are allowed. We present a set of in-
ference rules based on the theory of viewpoints and
a method for their application which expands on the
box notation introduced by Kalish and Montague for
natural deduction.

We suggest a reformulation of the reflection rules more
suitable to deal with partially specified theories or
contexts and give an account of what “entering” and
“leaving” a context should be in the setting of natural
deduction proofs.
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A APPENDIX

A.1 Inference rules for classical natural

deduction
P,Q
P
s (B
vpU{P}FQ
vpk(P=Q) =7
PP
T =5
P
PVQ,QVP v
vk PVQ,upU{P}}+C,opu{Q}+C
vphkC (v B)
vpU{P}F Q,vpU {P} F -Q
vpk —P =D
-|—IP
5 (- B)
P
Vo P/a] v

where the notation P[y/z] stands for P with all the
free occurrences of variable z substituted by ¢ and y is
a new variable not occurring in P.

Vz.P

P[t/z] Yo
L2
vpy F 3z . Pup; U Ply/z]+ Q (3 E

vp FQ

where Q does not contain the newly introduced vari-
able y.

A.2 Metalevel axioms and inference rules

in(P',{..., P",...}) (Az1)
in("P',vp) = in('in("P’, vp)', vp) (Az2)
in("P’,vp),in(Q’, vp)
n(PAQ,vp) (Meta A
in(PAQ', vp) (Meta A E)

in("P', vp),in('Q’, vp)
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in("P’,vp) - in('Q’, vp)
in('P = @', vp)

in('"P’,vp),in('P = Q',vp)

in(Q’',vp)

in('P',vp)
in('P v Q',vp),in(Q V P',vp)
in('P v Q',vp)
in("P',vp) - in('R’, vp)
in('Q’,vp) Fin(R', vp)
in('R', vp)

in(P’, vp) F in(Q A ~Q’, vp)
in('=P',vp)

in('-=P', vp)
in("P’, vp)

in(P',vp)

in('Vy . Ply/z]',vp)
in('Vz . P!, vp)

in("P[t/z},vp)
in(P[t/z]', vp)

in('3z . P',vp)

vpy Fin('3z . P',upy)
vp1 Uin(‘Ply/z)’,vp2) F in(Q’,vp2)

vp1 Fin(Q',up2)

(Meta = 1)

(Meta = E)

(Meta v I)

(Meta V E)

(Meta - 1)

(Meta -~ E)

(Meta V 1)

(Meta V E)

(Meta 3 1)

(Meta 3 E)
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Abstract

An unprecedented combination of simula-
tive and metaphor based reasoning about be-
liefs is achieved in an Al system, ATT-Meta.
Much mundane discourse about beliefs pro-
ductively uses conceptual metaphors such as
MIND AS CONTAINER and IDEAS AS IN-
TERNAL UTTERANCES, and ATT-Meta’s
metaphor-based reasoning accordingly leads
to crucial discourse comprehension decisions.
ATT-Meta’s non-metaphorical mode of belief
reasoning includes simulative reasoning (SR).
In ATT-Meta, metaphor-based reasoning can
block and otherwise influence the course of
SR.

1 INTRODUCTION

In spoken and written discourse, mental states and
processes are often described with the aid of com-
monsense models of mind. These models are largely
metaphorical, and the metaphorical descriptions often
convey information, about the quality of the mental
states, that is important for understanding the dis-
course. In particular, the descriptions can clarify how
agents can fail to draw even quite obvious conclusions
from their beliefs. Accordingly, as a step towards mak-
ing mental state reasoning more realistic, refined and
powerful, we have developed a system, ATT-Meta, for
reasoning about mental states reported in small frag-
ments of discourse, paying attention to metaphorical
descriptions. The reasoning part of the system cur-
rently has an advanced prototype implementation in
Quintus Prolog.

As an example of the phenomena of interest, consider
the following passage: Veronica was preparing for her
dinner party. Her brother’s recipe had said to fry the
mushrooms for one hour. She did this even though
in the recesses of her mind she believed the recipe to
be wrong. We claim that this last sentence manifests
the conceptual metaphor of MIND AS PHYSICAL

SPACE. Under this metaphor, the mind is a physical
space within which ideas or thinking events/situations
can lie at particular locations. The ideas and thinkings
are often themselves conceived metaphorically as phys-
ical objects, events or situations. As we will see below,
the use of this metaphor in the passage makes a con-
siderable difference to what it can be reasonably taken
to convey. It metaphor affects the balance of reason-
ableness between possible explanations of the disparity
between Veronica’s following of the recipe and her be-
lief that it was wrong. If no metaphor, or a different
one, had been used, then the balance would have been
different.

ATT-Meta’s main contributions are that it enriches
mental state representation/reasoning by bringing in
the commonsense models of mental states that people
actually use, and it integrates metaphor-based reason-
ing about mental states with simulative reasoning (SR)
about mental states. It thereby constrains SR in useful
and novel ways.

The plan of the paper is as follows. Section 2 expands
on the role of metaphor in discourse understanding.
Section 3 informally sketches the reasoning ATT-Meta
does on some example discourse fragments. Sections 4
to 7 provide many representation and reasoning details
underlying the account in section 3. The present paper
is a natural sequel to Barnden (1989, 1992).

2 METAPHORS OF MIND

Metaphors in discourse affect an understander’s task
of obtaining a coherent understanding. This is clear
from, e.g., Hobbs (1990), Martin (1990) and others.
Here we expand on the recipe example given above.
Consider the discourse fragment (1), and contrast
some possible continuations of it, namely (1a-c):

(1) Veronica was preparing for her dinner party. Her
brother’s recipe had said to fry the mushrooms for one
hour.

(1a) She did this even though she believed the recipe
to be wrong.
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(1b) She did this even though in the recesses of her
mind she believed the recipe to be wrong.

(1c) She did this even though she thought, “The
recipe’s wrong.”

Here (1a) contains an ordinary, non-metaphorical men-
tal state description. Sentence (1b) manifests the
MIND AS PHYSICAL SPACE conceptual metaphor,
explicitly referring to a specific subregion of the whole
“gpace” of the mind. (See, e.g., Lakoff 1993 for the
notion of conceptual metaphor as opposed to mere lin-
guistic manifestations of metaphor.) Ideas or thinking
episodes in one subregion can be incompatible with
ideas in another. For instance, one subregion can con-
tain the thought that a recipe is wrong, whereas an-
other can contain the thought that the recipe is right.
Alternatively, thoughts in one subregion can simply be
absent from another.

In (1c) we see the conceptual metaphor of IDEAS
AS INTERNAL UTTERANCES (following Barnden
1992). A thinking episode is portrayed as inner speech
within the agent (or, more rarely, as inner non-speech
utterances). The thinking episode is necessarily an
occurrent event happening at a particular moment in
time (as opposed to a long-term believing), is con-
scious, is usually a “forefront” thought as opposed to
being in the background, and, in cases like 1c, is usu-
ally confident as opposed to being tentative. We take
IDEAS AS INTERNAL UTTERANCES to be a spe-
cial case of MIND AS PHYSICAL SPACE, with the in-
ternal utterance being an event that takes place within
the “space” of the agent’s mind. MIND AS PHYSI-
CAL SPACE and IDEAS AS INTERNAL UTTER-
ANCES are two of the metaphors to which we have
paid most attention in our work. Two others, MIND
PARTS AS PERSONS and IDEAS AS MODELS, are
omitted from this paper for brevity, but see Barnden
(1989, 1992). There are many commonly-used, impor-
tant metaphors of mind. See, for example, Lakoff et al.
(1991) (and Barnden 1989, 1992 for further metaphors
and citations).

If one looked only at (1b,c,d) one might dispute the
above claims about metaphor, saying that those sen-
tences just involved canned forms of language. How-
ever, consider the following productive variants of
them:

(1b’) She did this [i.e. followed the instruction] after
forcibly shoving the idea that the recipe was wrong to
a murky corner of her mind.

(1c’) She did this even while whining to herself, “Oh
no, this damned recipe’s wrong.”

Consider also the immense potential for further vary-
ing these, e.g. using verbs other than “shove”
and “whine” or physical location phrases other than
“murky corner.” The most economical explanation of
the sense that (1b’,c’) and their further variants make

is that they appeal to the metaphors we mentioned
above. Then, for uniformity and continuity, it is a
short step to saying that (1b,c) also manifest those
metaphors, though in a more pallid way. If one wanted
to maintain that (1b) was not metaphorical, one would
have to claim, for instance, that “recesses,” and the
overwhelming majority of, if not all, words that can
be used to mean physical subregions of various sorts,
also happened to have literal mental meanings. And,
one would have to account for why the regularities in
the way the words are used to describe the mind are
analogous to regularities in their physical usage. An
example of such a regularity is that words such as “re-
cesses” and “corner” convey related meanings when
applied to the mind, much as they do when applied to
physical space. These considerations are similar to the
arguments used by Lakoff (1993).

(1c) does differ markedly from (1c’) in not using an
ordinary verb of speech. However, we make three ob-
servations. First, people commonly experience some
thoughts as “inner speech,” so that it is fair to take
(1c) as saying that Veronica was experiencing inner
speech. Secondly, the verb “think” is in fact often
used to portray speech in the following way: “Veron-
ica thought aloud that the recipe was wrong.” Thirdly,
the idea that (1c) really is suggesting speech is re-
inforced by the effect of introducing the evaluative
adjective “damned” into the quotation in (1c). One
might question whether (1c) implies inner speech as
opposed to inner writing. We plump for speech as be-
ing a far more likely implication, given that it is very
common to find thought-description sentences using
phrases such as “said to himself,” “debated within her-
self”, etc., and relatively rare to find ones that convey
inner writing; also, the sentence forms used within the
quote marks appear to be more typical of speech than
writing.

In (1a-c) there is a disparity between Veronica’s obey-
ing the recipe and her belief in its incorrectness. The
different ways the belief is described lead to different
degrees of plausibility for various possible explanations
of the disparity. One reasonable interpretation for (1b)
is that Veronica’s wrong-recipe belief was only min-
imally involved, if at all, in her conscious thinking,
so that she did not consciously think (to any signifi-
cant degree) that she was following a recipe that was
incorrect. By contrast, continuation (1c) places the
wrong-recipe belief squarely in her conscious thinking,
so it seems much more likely that Veronica deliberately
went against her own strong doubts, for some reason.
For example, she might have been ordered to follow
the recipe. We are not saying that an explanation for
(1c) could not hold for (1b), or vice versa. Rather, our
point is that the balance of reasonableness is different
between (1c) and (1b). The non-metaphorical (1a) is
vaguer in its implications than (1b,c), but (lc)-type
explanations seem more likely than (1b)-type ones.



3 SKETCH OF REASONING

Here we informally and partially outline the main rea-
soning steps ATT-Meta takes for examples (1-1a), (1-
1b) and (1-1c), conveying the rough flavor of its SR
and metaphor-based reasoning and of their intimate
interaction. We will touch on ATT-Meta’s unusual
feature of distinguishing conscious belief as an impor-
tant special case of belief. The section also illustrates
the uncertainty and defeasibility of ATT-Meta’s rea-
soning, largely apparent below through the use of the
qualifier “presumably.”

3.1 OVERALL STRATEGY AND
SIMULATIVE REASONING

We take (1-1a) first. It is given that Veronica followed
the recipe. (ATT-Meta currently always trusts the
discourse sentences to be true.) ATT-Meta infers from
this that

(2) presumably, Veronica consciously believed she was
following it

via a rule that says that if someone does an action then
(s)he is, presumably, conscious of doing so. It is also
given that Veronica believes the recipe to be wrong.
From this ATT-Meta uses simulative reasoning (SR)
to infer that

(3) presumably, she believed it was not good to follow
it.

(We use “not good” here in the sense of “not con-
ducive to achieving the recipe’s normal purpose.”)
The process is basically as follows. In a special
Veronica-simulation environment, ATT-Meta adopts
the premise that the recipe is wrong. We call this en-
vironment a simulation pretence cocoon. Using a rule
that says that if a body of instructions is wrong it
is not good to follow it, ATT-Meta infers within the
cocoon that

(3'): it is not good to follow the recipe.

Concomitantly, ATT-Meta infers (3). Further, within
the cocoon ATT-Meta adopts the following premise,
because of (2):

(2'): Veronica follows the recipe.!

Then, within the cocoon ATT-Meta infers the conjunc-
tion of (2') and (3'), namely

(4’): Veronica follows the recipe AND it’s not good to
follow the recipe.

1Since ATT-Meta is simulating Veronica, it would be
better to couch this premise as “I am following the recipe.”
However, the ATT-Meta implementation does not yet use
the treatment of indexicals that we have developed (but do
not present here). This deficiency does not get in the way
of the issues that are our main concern.
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Concomitantly, it infers that, presumably, Veronica
believes this conjunction. Notice here that an SR
conclusion such as this one or (3) is always qualified
by “presumably,” reflecting the fact that ATT-Meta
merely presumes that the agent does the necessary in-
ferencing.

Now, ATT-Meta has the following rule:

(R.1) IF someone is following a sel of instructions
and believes it to be wrong THEN, presumably, (s)he
consciously belicves that.

Therefore, ATT-Meta infers that Veronica’s belief in
the wrongness of the recipe was presumably conscious.
Thus, both premises used in the simulation cocoon
(namely: the recipe is wrong; Veronica follows the
recipe) reflect conscious beliefs of Veronica’s. As a
result, ATT-Meta presumes that any belief resulting
from the simulation is also conscious. Therefore, the
main result of the belief reasoning is

(4) presumably, Veronica consciously believed that:

she follows the recipe AND it’s not good to follow the
recipe.

This feeds into a rule that can be paraphrased as fol-
lows:

(R.2) IF agent X does action A and consciously be-
lieves that [(s)he does A AND it’s not good to do A]
THEN, presumably, the ezplanation is that (s)he has
a special reason for doing A despite having that con-
scious belief.

Thus, ATT-Meta is able to infer the main result of the
example, namely:

(5) presumably, Veronica had a special reason for fol-
lowing the recipe even though consciously believing that
[she’s following the recipe AND it is not good to follow
it].

3.2 METAPHOR-BASED REASONING

We now turn to (1-1c), which involves simpler reason-
ing than (1-1b) does. ATT-Meta’s general approach
to metaphor is to “pretend” to take a metaphorical
utterance at face value (i.e literally). That is, in the
case of (1c), ATT-Meta pretends that

(P) there was a real utterance of “The recipe’s wrong”
within Veronica’s mind,

where also ATT-Meta pretends Veronica’s mind was
a PHYSICAL SPACE. The pretences are embodied
as the adoption of P as a premise within a special
environment that we call a metaphorical pretence co-
coon for Veronica’s-IDEAS AS INTERNAL UTTER-
ANCES. Now, the real force of such cocoons is that
inference can take place within them, much as within
simulation cocoons. This will happen for (1-1b). How-
ever, in the present example, the only important action
that ATT-Meta bases on the metaphor is to use the
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following “transfer rule” linking certain metaphorical
cocoons to reality:

(TR.1) IF [within a cocoon for agent X's-IDEAS AS

INTERNAL UTTERANCES there is an utterance of

a declarative sentence S within X’s mind] THEN, pre-

%un‘;ably, X consciously believes the proposition stated
y S.

Thus, ATT-Meta infers that, presumably, Veronica
consciously believed the recipe to be wrong. Thus,
the remainder of the reasoning is essentially the same
as that for (1-1a), and ATT-Meta again constructs the
main result (5). (There is a sense in which (5) is more
strongly supported in the (1-1c) case than in the (1-
1a) case, because of general principles concerning the
specificity of inferences. However, this matter is still
under investigation.)

Notice that it is only within the metaphorical pre-
tence cocoon that ATT-Meta takes Veronica’s mind
to be a physical space. ATT-Meta could have infor-
mation outside the cocoon saying or implying that no
mind is a physical space. However, this generaliza-
tion, as instantiated to Veronica, is overridden by the
proposition within the cocoon that Veronica’s mind is
a physical space. (The reason for this is given helow.)
Also, propositions about Veronica’s mind within the
cocoon have no effect on reasoning outside the cocoon
unless explicitly exported by a transfer rule. Thus,
the within-cocoon proposition that Veronica’s mind is
a physical space does not cause trouble outside the
cocoon.

In case (1-1c), the metaphor-based reasoning was min-
imal, and furthermore did not interact with SR very
much. Things are markedly different in the case of
(1-1b). ATT-Meta still tries to do the same SR about
Veronica as above. However, one of the steps, namely
the one that constructs the conjunction (4') within the
simulation cocoon, is blocked from occurring. The rea-
son for this is as follows.

Suppose ATT-Meta comes to a within-cocoon conclu-
sion Q, and that this was directly based on within-
cocoon propositions Q1, ..., Qn. ATT-Meta concomi-
tantly sets up the external conclusion that the agent
(X) presumably believes Q, as was implied above.
However, another action is to record that this con-
clusion is dependent upon the hypothesis that

(I) X performs an inference step yielding Q from Q1,
ey Qn.

This hypothesis is, normally, deemed by ATT-Meta to
be presumably true. It turns out that for examples (1--
la) and (1-c) there is nothing that defeats this pre-
sumption. However, one use of metaphor-based rea-
soning in ATT-Meta is precisely to defeat presump-
tions of form (I). If an instance of I is defeated then
ATT-Meta abandons the conclusion that X presum-
ably believes Q (unless Q has other support, e.g. other

instances of I). If ATT-Meta abandons this conclusion
then it concomitantly abolishes Q within the simula-
tion cocoon. Two instances of I are set up in case

(1-1b):

(I.1) Veronica performed an inference step yielding
[it is not good to follow the recipe] from [the recipe
is wrong],

(1.2) Veronica performed an inference step yielding
[Veronica follows the recipe AND it is not good to fol-
low the recipe] from [Veronica follows the recipe] and
[it is not good to follow the recipe].

Now, part of ATT-Meta’s understanding of the MIND
AS PHYSICAL SPACE metaphor is:

(TR.2) X'’s performing an inference process yielding
Q from Q1, ..., Qn corresponds metaphorically to Q1,
..., @n physically interacting within X’s mind space
to produce Q. (If n is 1 then Q arises just out of Ql,
without an interaction with something else.)

This principle is couched in a set of transfer rules anal-
ogous in form to TR.1. In addition, ATT-Meta has a
rule purely about physical interactions that says

(R.3) IF some things are spatially separated from each
other, rather than being close together, THEN, pre-
sumably, they do not interact.

Another purely physical rule is

(R.4) IF Q1,..., Qn physically interact to produce Q
and the Pi are all within a particular region R, THEN,
presumably, Q is in R.

Other parts of ATT-Meta’s understanding of the
metaphor are the following transfer principles:

(TR.3) X believing P corresponds to the thinking-that-
P being at some position in X’s mind-space;

(TR.4) X consciously believing P corresponds to X’s
mind having a front region and the thinking-that-P be-
ing in that region;

(TR.5) IF a thinking occurs in the recesses of X’s
mind THEN, presumably, it is not conscious.

ATT-Meta sets up a metaphorical pretence cocoon for
Veronica’s-MIND AS PHYSICAL SPACE. ATT-Meta
takes (1b) at face value and adopts the within-cocoon
premise that in the recesses of this space there was
the thought that the recipe is wrong. As before, ATT-
Meta performs the SR step that concludes, within the
simulation cocoon, that it is not good to follow the
recipe. Hence, by TR.2 it also infers that, within
Veronica’s mind-space, the thought that the recipe is
wrong physically produced the thought that it is not
good to follow it. By R.4, it follows that the latter
thought was also in the recesses of Veronica’s mind.

However, ATT-Meta infers as in (1-1a) that presum-
ably Veronica consciously believed that she was fol-
lowing the recipe. Hence, by TR.4, the thought that



Veronica follows the recipe was in the front of her
mind. ATT-Meta takes the front and the recesses to
be distant from each other (relative to the size of the
mind-space). Therefore, ATT-Meta uses R.3 within
the metaphorical pretence cocoon to infer that the
thought that Veronica follows the recipe did not in-
teract with the thought that it is not good to follow
the recipe. Via TR.2, this undermines I.2. As a result,
the conjunction (4’) [Veronica follows the recipe AND
it is not good to follow the recipe] is abolished from
the SR cocoon. Concomitantly, the proposition that
Veronica believed this conjunction is abolished. (I.1,
on the other hand, is not undermined.)

Recall that in (1-1a) ATT-Meta inferred that, pre-
sumably, Veronica consciously believed the recipe to
be wrong. This inference is attempted also in case (1-
1b). However, it is defeated indirectly by the given in-
formation that the thought that the recipe was wrong
was in the recesses of her mind, which supports via
TR.5 the hypothesis that the belief was not conscious.
This support for this hypothesis is judged to be more
specific, and therefore stronger, than the support for
the hypothesis that the belief was conscious.

All in all, (4) is defeated in case (1-1b) — ATT-Meta
does not conclude it. In fact, because of a closed-world
provision about belief in section 6, ATT-Meta comes
to the stronger conclusion that Veronica actually failed
to believe the conjunction (4’). This then allows the
following rule to proceed:

(R.5) IF agent X does action A, believes that it’s not
good to do A, but fails to believe that [X does A AND
il’s not good to do A] THEN, presumably, this failure

zz?lafins the apparent disparity between X’s action and
elief.

Thus, ATT-Meta is able to infer the main result of the
example, namely:

(6) presumably, the ezplanation for the apparent dis-
parity concerning Veronica is that she failed to believe
that [Veronica follows the recipe AND the recipe is
wrong].

Finally, it turns out that ATT-Meta does arrive at
some weak support for (6) in cases (1-1a) and (1-1c),
and conversely comes up with some weak support for
(5) in case (1-1b). This reflects our point in section
2 that the metaphors affect the balance of reasonable-
ness of explanations, and do not totally discount par-
ticular explanations.

4 REPRESENTATION SCHEME

ATT-Meta’s representations are expressions in a first-
order logic with equality and with set description de-
vices (that are syntactic sugar for first-order expres-
sions). The logic is episodic, in that terms can denote
“episodes” and sets of them. Our logical representa-

Metaphor and Beliefs 31

tions are similar in spirit to those of Hobbs (1990),
Schubert & Hwang (1990) and Wilensky (1991). They
are, overall, closest to Wilensky’s, but the treatment
of belief is similar to Hobbs’ and different from those
of Wilensky and Schubert & Hwang. In common with
Schubert & Hwang, we take an episode to be any sort
of situation, event or process. An episode has a time,
which can be an instant, a bounded interval, or an
unbounded interval. Time instants and time intervals
are just objects in the domain (of the intended inter-
pretation), just like any other object. We have no
space here to go into the detail of the handling of time
or causation, and in any case ATT-Meta’s reasoning
about time is currently limited. The detail we do give
here is just what is most directly relevant to the aim
of this paper (i.e. to explain ATT-Meta’s mixing of
belief reasoning and metaphor-based reasoning).

Objects in the domain can be “non-certain” or “cer-
tain.” For instance, the episode of John kissing Mary
at <some time> could be non-certain. That is, ATT-
Meta would not take the kissing to be necessarily real.
The basic type of term for denoting an episode is il-
lustrated by:

#ep(Kissing, 7, John, Mary).

Kissing denotes the set of all conceivable kissing
episodes. 7 is some term denoting a specific time inter-
val, and the other arguments denote particular entities
(which can be non-certain). We assume that a kissing
episode is uniquely specified by the time interval and
the identity of the participants. If a kissing episode
has other aspects, for instance a manner, then these
can be specified on the side, as i: e = #ep(Kissing,
...) A manner(e) = lovingly, for some constant
or variable e.

Episodes with the same time as each other can be com-
pounded by conjunction and disjunction, using func-
tion symbols #ep-conj and #ep-disj. For example,
the term

#ep-conj(#ep(Being-Happy, 7, John),
#ep(Being-Sad, 7, Bill))

denotes the episode of John being happy and Bill be-
ing sad at/over r. Episode disjunction and negation
is similar. There is also a way for expressing quantifi-
cational episodes, such as the episode of John loving
each of his sisters over interval i, or the episode of some
person in a given room laughing at John during inter-
val i. The quantificational apparatus is simple, but its
design required attention to subtleties raised by hav-
ing to allow for non-certain episodes and other entities.
For instance, the episode of all dogs being happy over
interval 7 must be defined independently of which enti-
ties really are dogs (according to ATT-Meta) but must
instead map all conceivable being-a-dog situations to
corresponding being-happy situations.
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Non-certain entities episodes can have the status of
Possible, Suggested or Presumed. Possible means that
the episode may be real (its negation is not certain).
Suggested means there is some reason to think the
episode is real. Presumed means ATT-Meta is pre-
suming the episode is real. These degrees of uncer-
tainty are stated by means of predications such as
#presumed (#ep(Kissing,...)).? Any formulae at
the top level in the system are (implicitly) certain —
it is only episodes (and other domain entities) that are
qualified as to certainty.

We now turn to mental states, concentrating here ex-
clusively on the central case of belief. We have sev-
eral modes of belief representation, one default mode
and various different modes corresponding to different
metaphors of mind used in mental state descriptions.
The default mode is used, for instance, when a be-
lief is reported non-metaphorically, as in “Bill believes
that John was ill on <some date>.” Under the de-
fault mode, this state of belief is cast as an episode of
Bill being in a particular relationship to the episode
of John being ill on the date in question. The formula
we use is

#certain(
#ep(#Believing-Certain, now, Bill,
#ep(Being-Ill, John, 7)))

where 7 denotes the time interval for the specified date,
now denotes some time interval including the current
instant, and #Certain-Believing denotes the set of
all conceivable episodes of an agent believing some-
thing with certainty. Notice the two different layers of
certainty qualification: ATT-Meta has one degree of
certainty that Bill had the belief, and Bill, if he does
have the belief, has his own degree of certainty. The
two layers are independent, so that we might alterna-
tively have

#suggested(
#ep(#Believing-Presumed, now, Bill,
#ep(Being-I11, John, 7))).

Note that we take Bill’s being certain of some-
thing as implying that he presumes it (i.e. he
“believes-presumed” it), and believing-presumed sim-
ilarly implies believing-suggested. = Conscious be-
lief is represented similarly, but using episode kinds
#Consciously-Believing-Certain, etc.

Finally, we sketch the most important aspect of the
representation, which is how ATT-Meta expresses be-
lief states that are described metaphorically in the
input discourse. The basic principle here is that of
metaphor-infused representation. That is, ATT-Meta

?Elsewhere we have called the Suggested and Pre-
sumed ratings by the names PERHAPS and DEFAULT
respectively.

pretends to take the metaphorical descriptions liter-
ally, and uses the ordinary episode kinds that are
used within the source domain (or “vehicle”) of the
metaphor. For example, consider the sentence, The
idea that Sally is clever is in Xavier’s mind. In line
with our comments on the productivity of metaphor
in section 2, we take this sentence to be a manifesta-
tion of MIND AS PHYSICAL SPACE. The encoding
of the sentence is

[WITHIN Xavier’s-MIND AS PHYSICAL SPACE cocoon
#certain(
#ep-conj(
#ep(Being-Physical-Object-Type, t, i),
#ep(Being-Physical-Space, t, m),
#ep(Being-Mind-0f, t, m, Xavier),
#ep(Inst-Being-Physically-In, t,i,m),
#ep(Being-Agent’s-Certain-Idea-0f,t,Xavier,i,
#ep(Being-Clever,t,Sally))).
]

where t, i, etc. are Skolem constants. Here
Inst-Being-Physically-In is the set of all conceiv-
able situations of an instance of some physical-object
type being physically in something. The idea (denoted
by i) of Sally’s (certainly) being clever is stated to be
a physical-object type, Xavier’s mind (m) is stated to
be a physical space, and and instance of i is stated to
be physically in m.

We therefore do not represent the meaning of the
sentence by translating the metaphorical input into
non-metaphorical internal representations: the inter-
nal representations are themselves metaphorical. Note
that we are not saying that ATT-Meta really believes
that, say, an idea is a physical-object type — in a sense
ATT-Meta merely pretends temporarily to believe it,
because the representation is within the stated cocoon.

Below, two propositions are complements iff one is the
negation of the other. Also, a given proposition is ei-
ther a piece of knowledge in ATT-Meta’s own knowl-
edge base or is a proposition derived directly from the
discourse. In the latter case it has a rating of Certain.

5 REASONING BASICS

ATT-Meta'’s reasoning is centered on a goal-directed,
backwards-chaining usage of production rules that link
episodes to episodes (rather than formulae to formu-
lae). Each rule has the form

<LES> — [<qualifier>] <RHS>,

where the LHS is a list of episode-denoting terms (typ-
ically of the form #ep(...) possibly containing free
variables, the RHS is one such term, and <qualifier> is
one of Suggested, Presumed, or Certain. Also, a term
e, or a sublist of terms on the LHS, can be embed-
ded in a metaphorical cocoon designator as follows:



[WITHIN-COCOON x: pu e]l. Here x is an (agent-
denoting) term (usually a variable) and y is the name
of a metaphor such as MIND AS PHYSICAL SPACE.

An (unrealistic) example of a rule is

#ep(Loving, t, z, y), #ep(Being-Boy, t, z)
— [Presumed] #ep(Being-Hungry, t, z).

This says that any boy who loves something at/over
some time t is, presumably, hungry at/over t. Sup-
pose ATT-Meta is investigating the proposition that
Mark is hungry during a time interval denoted by
some term 7. Then it sets up the episode-term
#ep(Being-Hungry, 7, Mark) as a subgoal. (We use
the term “proposition” loosely to mean an episode-
denoting term that has either been given a rating of
at least Possible, or is an existing reasoning goal.) It
finds the above rule, and instantiates its { and z vari-
ables to now and Mark. Suppose ATT-Meta already
has the formulae

#certain(Loving, 7, Mark, Mary)
#certain(Being-Boy, 7, Mark).

As a result, ATT-Meta creates the for-
mula #presumed (#ep(Being-Hungry, 7, Mark)). If
there were other rules also providing evidence for the
Mark-hungry goal, then the qualifier assigned would
be the maximum of the qualifiers suggested by the in-
dividual rules, where Suggested is less then Presumed
which is less than Certain.

Also, the LHS terms can match with Suggested and
Presumed episodes, not just Certain ones as in our
example. Then the qualifier suggested by the rule for
the RHS episode is the minimum of the certainty levels
picked up by the LHS terms and the <qualifier> in
the rule itself. So, if is only Suggested that Mark loves
Mary, then from the rule it would only get a Suggested
rating for Mark being hungry.

When ATT-Meta investigates a goal-episode (e.g.
Mark being hungry), it automatically investigates its
negation as well. Suppose there are rules that could
provide evidence for the negation (so an RHS could
have the form #ep-neg(#ep(Being-Hungry, t, z)).
Let us say that the maximum of the confidence lev-
els for the original hypothesis is P, and the maximum
for the negated hypothesis is N. (Each of N or P is
always at least Suggested.) Then ATT-Meta proceeds
as follows: If P and N are both Certain, then a genuine
error condition has arisen and ATT-Meta halts. Oth-
erwise, if one is Certain, then it prevails and the other
goal is deleted. Otherwise, both the original goal and
its negation are given ratings by the following rating
reconciliation scheme: if one or both of P, N are Sug-
gested then they are accepted as the certainty levels
of the two hypotheses; and if P, N are both Presumed,
then, unless there is reason to prefer one presumption
over the other, both hypotheses are “downgraded” by
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being given a rating of Suggested. Currently, the only
way in which a one presumption can be preferred over
another is through a specificity comparison heuristic.

We are actively investigating the question of how to
compare specificity. We describe here one crude, pre-
liminary approach that we are experimenting with.
The defined more-specific-than relation is irreflexive
and antisymmetric, but it is not transitive and is there-
fore not a partial order. It is not yet clear how impor-
tant this deficiency is.

Let R be a rule that contributed a Presumed rating to
a proposition P. Then the set of propositions to which
R was applied is an immediate basis (IB) for P. Also, if
P is a given proposition, then one IB for P is just {P}.
It may have other IBs because a given proposition may
also be supported by rules.

With Q as above, we give prefermce to Q over Q if
the support for Q is more @-specific than the support
for Q. The support for a proposition Sl is more Q-
specific than the support for a proposition S2 iff some
IB for S1 is more Q-specific than some IB for S2 and
not less Q-specific than any IB for S2, and any IB for
S2 that is more Q-specific than some for S1 is also less
Q-specific than some for S1. (Our more-specific-than
relation is relative to Q because of condition (b) below.
“Q-specific” is synonymous with “Q-specific.”) )

IB1 is more Q-specific than IB2 iff each proposition
P in IB2 is either in IB1 or less Q-specific than IB1
and there is a proposition in IB1\IB2 that is not less
Q-specific than IB2. Proposition P is less Q-specific
than proposition set IB iff

(a) P can be derived just from IB but the propositions
in IB cannot all be derived just from P; or:

(b) neither of P, IB can be derived just from the other,
and some proposition in IB is “closer” to Q than P is
(see below); or:

(¢) neither of P, IB can be derived just from the other,
P is incomparable as to Q-closeness with each propo-
sition in IB, and the support for P is less Q-specific
than the support for some proposition in IB.

P1 is closer than P2 to Q under the following condi-
tions:

(b1) Q is about (exactly) one agent X’s mental state,
P1 is about X’s mental state, but P2 is not; or

(b2) Q is about one agent X’s mental state, P1 is about
X, but P2 is not.

Derivability in (a) is examined using heuristically lim-
ited techniques; and note that the derivability check
is a matter of examining the implementation’s inter-
proposition dependency links rather than undertaking
more reasoning. The recursion introduced by (c) must
be limited because of circularities, notably those in-
troduced by {P} being an IB of P when P is a given
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proposition. Provision (b) is closely tailored to the
purposes of ATT-Meta, but it is a special case of a
general principle: if one is trying to establisk some-
thing, Q, and some proposition P1 is closer in subject
matter to Q than some other proposition P2 is, then
one should tend lo give more weight to P1 than {0 P2.
In turn, this general principle is a natural generaliza-
tion of the normal overriding-of-inheritance principle
commonly employed in semantic networks. For a given
node, closer ancestors are closer in subject matter to
the node than more distant ancestors are. Aboutness
in (b1,2) is assessed in a simple, crude way.

As an example of the use of the Q-specificity heuristic,
consider the hypothesis in the (1-1c) example in sec-
tion 2 that Veronica consciously believed that she was
following the recipe. Let this be Q. Q gets an initial
Presumed rating only via rule R.1 from the propo-
sitions that (i) she followed the recipe and (ii) she
believed the recipe to be wrong. Here (i) is a given
proposition (with no rule-based support) and (ii) is
derived by one rule application from the given propo-
sition that (iii) she believed in the recesses of her mind
that the recipe was wrong. On the other hand, not-Q
(i.e. Q) gets an initial Presumed rating from (iii) via
TR.5 only. So, the only IB for Q is {(1),(ii)} and the
only IB for not-Q is {(iii)}. Here (ii) is less Q-specific
than {(iii)} since (ii) is derivable from just (iii) (but
not vice versa). Also, (i) is less Q-specific than {(1ii)}
by condition (bl) above. It is also easy to see that
(iii) is not less Q-specific than {(i),(ii)}. Therefore,
Q’s only IB is more Q-specific than Q’s only IB, and
only Q is downgraded to Suggested.

Finally, we can only briefly mention an important
truth-maintenance algorithm used in the implemen-
tation. Because of the common phenomenon of circu-
larities in the inter-hypothesis derivation graph, and
because of the above downgrading of Presumed rat-
ings to Suggested, ATT-Meta must sometimes traverse
parts of the graph, adjusting confidence ratings in or-
der to satisfy some constraints. The updating is done
lazily (i.e., on demand). (Cf. the lazy type of ATMS
studied by Kelleher & van der Gaag 1993).

6 BELIEF REASONING

The central, but not the only, mode of belief rea-
soning in ATT-Meta is simulative reasoning (SR).
SR has been proposed by a number of investigators
as a relatively efficient technique for reasoning about
agents’ beliefs (Ballim & Wilks 1991, Chalupsky 1993,
Creary 1979, Dinsmore 1991, Haas 1986, Konolige
1986, Moore 1973; although Konolige describes as sim-
ulation what we call explicit meta-reasoning, and calls
SR a form of “attachment”). An SR system can in-
tuitively be described as going into the agent’s belief
space, and reasoning within it by means of the system’s
own inference rules, acting on beliefs in the space;

it then counts resulting conclusions as beliefs of the
agent (perhaps only defeasibly). SR can also be de-
scribed as the system pretending temporarily to adopt
the agent’s beliefs. SR is in contrast to using axioms or
rules that constitute a meta-theory of agents’ reason-
ing. The advantages of SR are discussed in some detail
in Haas (1986) and Barnden (in press), and include the
point that SR allows any style of base-level reasoning
used by the system for ordinary purposes to be easily
attributed to an agent, without the need for a separate
meta-theory for each such style of reasoning — abduc-
tion, induction, ATT-Meta-style defeasible/uncertain
reasoning, or whatever.

ATT-Meta’s SR is procedurally complex. We therefore
describe it informally, though still precisely. First we
give a thumbnail sketch. The SR proceeds in a back-
wards, goal-directed way. Suppose ATT-Meta is inves-
tigating the hypothesis that X believes-py P, where pg
is one of the confidence ratings from Possible to Cer-
tain. ATT-Meta strips off the “X believes-py” to get
the reasoning goal P within a simulation cocoon for X.
In the implementation, placing a proposition within a
simulation cocoon consists of tagging it with the iden-
tity of the believer, X. In its normal way, ATT-Meta
also investigates the complement P of P within the co-
coon. Hence, the SR might end up concluding that X
believes P rather than P.

Currently, any of ATT-Meta’s own rules can be used
within the X-simulation cocoon (i.e. can be applied to
X-tagged propositions, yielding X-tagged conclusions).
However, in contrast with some other SR schemes,
ATT-Meta’s own propositions are not ascribed (by de-
fault) to the believer, i.e. imported into the cocoon.
(This reflects a very recent change in our approach. In
fact, a provision at the end of this section embodies
an opposite to default ascription.) Rather, the only
way for a proposition Q to enter the cocoon from out-
side is via a proposition (outside the cocoon) of the
form [X believes-p Q] for some p. Further, Q cannot
be inserted in the cocoon unless ATT-Meta’s rating
for [X believes-p Q] is Presumed or Certain. This is
to limit the complexity of reasoning and to boost its
definiteness. In practice, ATT-Meta has many rules
that can lead to propositions of form [X believes-p Q],
for general classes of agent. An example is a rule we
appealed to in section 3, saying that if an agent X
performs an action then, presumably, X consciously
believes (s)he does so. (A further rule is needed here
to go from conscious belief to belief simpliciter.) No-
tice that conclusions from such rules can be defeated
by other information. For instance, the conclusion of
the rule just mentioned could be defeated by a given
Certain proposition that X does not believe (s)he per-
forms the action. Also, conclusions from SR can defeat
the conclusions of such rules, or vice versa (depending
on which way specificity comparisons go).

Let Q be P, P or a subgoal used in the reasoning within



the cocoon towards P or P . If Q is given rating p by
reasoning within the cocoon, then the proposition that
X believes-p Q is given a rating of Presumed outside
the cocoon, barring interference from reasoning out-
side the cocoon.

Now we provide a complete description of the process.
It schema instance complex, but, as we will explain,
for much of the time in practice only simple special
cases arise. With Q as above, the steps of the process
applied to Q and Q are in outline as follows. After the
outline we will provide the detail.

(A): Simulation proper. Because the reasoning is
backwards, we assume that all reasoning towards Q
and Q has been done (by recursive application of the
process we are now describing), and in particular that
their ratings have been reconciled with each other. No-
tice that one of Q, Q may have been eliminated by a
Certain rating for the other.

(B): Externalization. Q and Q are “externalized” to
create hypotheses, outside the cocoon, of the following

types:

(i) X believes-¢’ Q
(1) not(X believes-p’ Q)
(iii) X believes-p’ Q
(iv) not(X believes-p’ Q)

for various ratings g’ related to the ratings for Q and
Q. The propositions of types (i) to (iv) are given par-
ticular preliminary ratings.

(C): Non-simulative phase. The hypotheses intro-
duced in (B) are now investigated by ordinary reason-
ing outside the cocoon, using any rules that address
those hypotheses. (Of course, some of the hypotheses
may coincide with given propositions.) In particular,
special rules that mutually constrain propositions of
types (i) to (iv) are available. In this phase, a propo-
sition introduced by (B) can have its rating upgraded
or downgraded, or can be eliminated altogether.

(D): Consciousness attribution. There may be a goal
to show that Q is consciously believed by X, not just
believed. If so, and Q still exists and resulted within
the cocoon from conscious beliefs, then that goal is
given support.

(E): Re-internalization. If any proposition of form [X
believes-p Q] still exists and has rating at least Pre-
sumed, then the final rating given to Q inside the co-
coon is the maximum of the p values in such proposi-
tions. Similarly for Q. If no [X believes-p Q/_Q% exists
anymore, then Q/Q (resp.) is eliminated from the co-
coon.

The following fleshes out steps (A) to (D) of the above
outline. (We use informal IF-THEN descriptions of
rules, but they are straightforwardly expressible in the
formalism).
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(For A) Ratings for Q and Q contributed by individ-
ual rules are reconciled with each other in the normal
way, except that a Certain/Certain clash results only
in the SR for X being halted, rather than in a global
system error. (A more sophisticated possible action is
mentioned below as a future research item.)

(B.1) If Q is still present and has rating p, then for
each rule that contributed to Q within the cocoon by
being applied to some propositions Q; to Q, with rat-
ings p; to pn, the following goal is set up outside the
cocoon, with an initial rating of Presumed:

(I.Q) X does-inference-step to Q with rating p from
Qi, ..., Qn with ratings p; to p,.

(Cf. schema (I) in section 3.) And, [X believes-p Q] is
regarded as having been supported by the rule

(R.Q) IF ...(1.Q) as above ... AND X believes-p; Q;
AND ... AND X believes-p, Q, THEN [Cer-
tainly] X believes-p Q.

Since, by recursion over the process we are describing,
the Q; do not exist in the cocoon unless X believes
them to some degree, (X believes-p Q] is given some
degree of support by R.Q, using the normal scheme for
ratings management in rule application. Normally, I.Q
keeps its rating of Presumed, but it is investigated in
the normal way and could be upgraded, downgraded
or eliminated.

Q is dealt with similarly, possibly giving rise to anal-
ogous propositions (I1.Q) and rule (R.Q).

(B.2) Suppose Q has rating Suggested inside the co-
coon, and this resulted from a downgrade because of
conflict with Q. Then ATT-Meta regards the following
rules as having been applied, for each (I1.Q) produced
by step (B) for which p = Presumed:

(R".Q) IF ...(1.Q) as above ... AND X believes-p; Q;
AND ... AND X believes-p, Q, THEN [Cer-

tainly] not(X believes-Presumed Q).
Q is treated similarly.

(For C) The special rules mentioned above are defined
by the following schemata. p and p’ stand for any
ratings where p > p’ > Possible.

(RB1) IF Y believes-p B THEN [Certainly]
Y believes-p’ B

(RB1’) IF not(Y believes-p’ B) THEN [Certainly]
not(Y believes-p B)

(RB2) IF Y believes-Certain B THEN [Presumably]
not(Y believes-Possible B)

(RB2') IF Y believes-Possible B THEN [Presumably]
not(Y believes-Certain B)
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(RB3) IFY believes-Presumed B THEN [Presumably] The SR scheme as described can also be used with

not(Y believes-Presumed B).

A Presumed/Presumed clash between X believes-p Q’

and not(X believes-p Q'), where Q' is either Q or Q,
is treated in the normal way.

Once the reasoning of this phase is complete, ATT-
Meta applies a closed-world assumption to X’s belief
in Q and X’s belief in Q. If p is the maximum rating
such that [X believes-p Q] has a rating of Presumed or
Certain, then ATT-Meta gives a Presumed rating to
not[X believesp’ Q] for each p/ higher than p (unless
that proposition already has a rating of Presumed or
Certain). Similarly for Q.

(For D) Consciousness attribution is handled in part
by a “conscious” counterpart for each rule of type
(R.Q) or (R.Q) as defined in (B.1). This counterpart
just has “believes” replaced by “consciously believes”
throughout. In addition, ordinary non-simulative rea-
soning within (C) can lead directly to conclusions
of form [X consciously-believes Q], or similarly with

. In particular, we have made use of rules such
as the following for specific sorts of belief B: IF Y
believes-p B AND Y is conscious THEN [Presumably]
Y consciously-believes-p B.

That completes the description of SR. Although the
process is quite complicated in general, it is in prac-
tice relatively unusual for both (A) and (C) to involve
a significant amount of processing. If (A) does do so
but (C) does not, then essentially (B) and (D) leave
the results of (A) unchanged. Conversely, if (C) in-
volves significant reasoning but (A) and (B) are trivial
because Q and Q find no support within the cocoon,
then essentially (D) just strips off belief layers from
positive belief propositions established by (C). Also,
the process is optimized by means of special processing
steps in the implementation. For instance, the RB...
and (R.Q) rules are not explicit in the implementation.

When both (A) and (C) are significant, some interest-
ing effects can arise. In particular, a downgrade during
(A) of Q or Q because of a Presumed/Presumed clash
within the cocoon can be reversed by (C). For exam-
ple, there might be a given, Certain proposition that
X believes-Presumed Q, preventing a downgrade of Q.
The prevention happens thus: during (C), that given
proposition defeats the Presumed proposition arising
from (B.2) that X does not believe-Presumed Q. As a
result, during (D), Q is given a rating of Presumed.

During (C), a Presumed/Presumed conflict between
a proposition of one of the forms (i) to (iv) and its
complement can bring in a specificity comparison, as
normal. The rules of form (R.Q), (R.Q), (R'.Q) and
(R'.Q) allow the comparison to look back to the way
that the believings on the LHSs of those rules were es-
tablished, with the reasoning within the cocoon being
invisible to the process.

SR, allowing nested belief to be handled. However, we
have not yet intensively investigated this matter.

ATT-Meta’s top-level reasoning goal when faced with
discourse fragments like (1-1a/b/c/d) in section 2 is
currently set by hand and is to the effect that some
disparity in the discourse is resolved because of expla-
nation e, where e is a variable in the goal and is bound
as a result of satisfying the goal. Such goals match the
RHSs of rules such as R.2 and R.5 in section 2. The
disparity is currently not detected by ATT-Meta itself.

7 METAPHORICAL REASONING

Hypotheses of form (I.Q) above (or, of course, 1.Q)
introduced by steps (B.1) and (B.2) of SR provide a
means whereby meta-reasoning about an agent’s in-
dividual reasoning steps can be applied to affect the
course of SR. Such reasoning might downgrade or up-
grade those hypotheses, thus affecting the strength of
the conclusions reached by rules such as (R.Q). We
have studied metaphor-based reasoning that affects (in
fact, only ever downgrades) the hypotheses (1.Q), but,
in principle, non-metaphorical reasoning could also do
so. In particular, limitations on the amount of rea-
soning the agent is assumed to be able to do could be
brought into the picture.

We concentrate here on the effect of metaphor on hy-
potheses (1.Q), but a metaphor-based inference can
also say something direct about an agent’s belief. For
instance, in section 3, an IDEAS AS INTERNAL UT-
TERANCES inference directly produced the conclu-
sion that a particular belief was conscious.

When a hypothesis (1.Q) is created, one sort of rule
that might attack it (i.e. support its negation) is a
metaphorical “transfer” rule such as TR.2 in section
3. Through the ordinary process of backwards rule us-
age, this causes subgoals to be set up inside the (X,M)
metaphorical pretence cocoon specified by the rule, if
that cocoon exists. Here X is the agent and M is the
name of the metaphor. A special action is to try to
establish whether the cocoon exists. Currently, the co-
coon only exists if a metaphorical belief representation
(as at the end of section 4) has been set up as a direct
result of one the sentences in the input discourse. If
the cocoon does not exist, then the transfer rule fails.
If the cocoon does exist, then the presence of a proposi-
tion P within it is simply noted in the implementation
by tagging a copy of P with (X,M). When the cocoon
is created, one or more standard premises are inserted.
For instance, if M is MIND AS PHYSICAL SPACE,
then the cocoon will contain the Certain premise that
X’s mind is a physical space. Also, other premises
resulting directly from the input discourse can be in-
serted. For instance, the discourse might say that a
particular idea is in X’s mind. We call these discourse
premises for the cocoon. Currently all such premises



are Certain.

Reasoning within the cocoon is as normal, with a small
but important change to the rating-reconciliation
scheme. The reasoning within the cocoon (i.e. mediat-
ing between (X,M)-tagged propositions) can use any of
ATT-Meta’s rules, but because of its goal-directedness
it will ordinarily just use rules peculiar to the vehicle
domain of M. Subgoals resulting from within-cocoon
rule consideration can also be addressed (supported
or attacked) by transfer rules. In turn, these rules
can lead to rule consideration entirely outside the co-
coon. In this way, metaphor-based reasoning is in-
timately and context-sensitively combined with non-
metaphorical reasoning.

Knowledge outside the cocoon can conflict with knowl-
edge inside, as pointed out in section 3. For instance,
ATT-Meta may have the rule (R) that a mind is
Certainly not a physical space. This rule’s Certain
conclusion in X’s case would conflict with the stan-
dard premise mentioned above as being in the cocoon.
To handle this problem, we simply make the follow-
ing change to the rating-reconciliation scheme as used
within the cocoon: when considering a subgoal Q and
its complement Q where the preliminary rating for the
latter is Certain, if Q has support (however indirectly)
from a standard cocoon premise, discourse premise for
the cocoon, and/or transfer rules, whereas Q does not
have such support, then the Certain rating for Q is first
downgraded to Presumed. (Notice that this does not
affect cases where both or neither of Q, Q have sup-
port of the type mentioned.) As a result, the ordinary
operation of ATT-Meta’s rating reconciliation scheme
can cause the downgrading of Q to Suggested only, or
its elimination. Elimination would happen with Q be-
ing that X’s mind is a physical space, since this is a
standard cocoon premise and therefore Certain. This
defeats Q’s original Certain rating because that is first
downgraded to Presumed.

Finally, observe that there may be more than one hy-
pothesis (1.Q) for a given Q, because Q may be sup-
ported within SR in more than one way. It could be
that metaphor-based reasoning only downgrades one
such hypothesis. Then, the rating of the proposition
[X believes-p Q] supported by rules of form R.Q is
not, after all, affected. Also, in principle, an (1.Q)
could have completely independent support from non-
metaphorical, non-simulative reasoning, and this sup-
port might defeat the support from metaphor-based
reasoning.

8 CONCLUSION

ATT-Meta differs from other work on belief represen-
tation/reasoning mainly by taking account of the im-
portant phenomenon of metaphorical descriptions of
mental states in discourse. In particular, these descrip-
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tions can clarify the way in which an agent believes
something (as opposed to specifying what is believed).
Such ways of believing can make a major difference
in discourse understanding, for instance by explaining
how agents can fail to see consequences of their be-
liefs. Also, ATT-Meta is unique in having a systematic
and well-motivated way of constraining the application
of SR, namely by integrating it with metaphor-based
reasoning. The SR and metaphor-based reasoning are
completely integrated into a powerful and practical un-
certain/defeasible reasoning framework. The SR is un-
usual in distinguishing conscious belief as an important
special case.

ATT-Meta is one of the few implemented, or de-
tailed theoretical, schemes for significant metaphor-
based reasoning. (Others are Hobbs 1990 and Martin
1990.) We integrate metaphor-based reasoning into an
uncertain reasoning framework much as Hobbs does,
except that he uses abductive framework. In addition,
our scheme for metaphor-based reasoning is much like
that of Hobbs, in that it usually proceeds by apply-
ing concepts and rules from the metaphor vehicle di-
rectly to the target items, rather than by translating
them into target-domain concepts and rules. Some of
the advantages of the approach are discussed in Barn-
den (1992). ATT-Meta differs from Hobbs’ and Mar-
tin’s work in being concerned only with metaphors of
mind. Nevertheless, there is nothing in our approach
that is peculiar to metaphors of mind, as opposed to
metaphors for other abstract matters. ATT-Meta cur-
rently handles only metaphor that is conventional to
it. Our work therefore differs from, e.g., that of Fass
(1991) and Iverson & Helmreich (1992), who are con-
cerned with working out the nature of novel(to-the-
system) metaphors encountered in sentences.

Nevertheless, ATT-Meta can be creative in its use of
any given metaphor, because any source-domain fact
or rule can be opportunistically used during metaphor-
based reasoning. For example, consider the sentence
“One part of Veronica was insisting that the recipe
was wrong.” We take this to exhibit what we call the
MIND PARTS AS PERSONS metaphor. Given that a
normal inference from the fact that a real person insists
something that some interlocutor of that person has
said something that conflicts with it, ATT-Meta can
conclude (within a metaphorical pretence cocoon) that
some non-mentioned part of Veronica has said that the
recipe was correct, and therefore presumably believes
this. Notice that there is no need here for any transfer
rule to impinge on the notion of insisting. In this way,
all the richness of metaphor vehicle (source) domains
is available for use. This point is strengthened by the
fact that the knowledge bases we have built up for the
metaphor vehicles are not contrived for metaphorical
use, but are designed to support ordinary reasoning
within those domains. For instance, the physical rules
in section 3 are commonsensical rules that are useful
for ordinary physical reasoning.
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In future work, we hope to address the following issues
among others: a formal Q-specification of the intended
interpretation of the episodic logic; a more powerful
specificity heuristic; and a more sophisticated treat-
ment of Certain/Certain clashes within SR -— e.g.,
one possibility is for the system to postulate a MIND
AS PHYSICAL SPACE view of the agent, even if this
is not directly indicated by the discourse, and then
place the clashing propositions in different mind re-
gions. Also, ATT-Meta provides a promising frame-
work for various interesting ways of nesting different
types of reasoning. The nesting of metaphor-based
within simulative reasoning allows the ascription of
metaphorical thinking about mental states to agents.
This is a useful addition to ordinary nested belief rea-
soning. The nesting of belief reasoning, including SR,
within metaphor-based reasoning allows SR to be ap-
plied to metaphorical “persons” in a metaphor vehicle.
The nesting of metaphor-based reasoning inside itself
allows the handling of chained metaphor (where as-
pects of a metaphor vehicle are themselves conceived
metaphorically).

In this work we have had to adopt provisional solutions
to a number of difficult problems, both in representa-
tion and reasoning, aside from SR and metaphor-based
reasoning themselves. For example, we have had to
deal with the de-dicto/de-re distinction, indexicality in
beliefs, complex episodes, representation of time and
causality, and defeasible reasoning. Our solutions to
these issues are to some extent orthogonal to the main
principles of simulative and metaphor-based reasoning
that we have adopted, and are subject to change.
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Abstract

Reasoning with minimal models is at the
heart of many knowledge representation sys-
tems. Yet it turns out that this task is
formidable, even when very simple theories
are considered. In this paper we introduce
the elimination algorithm, which performs in
polynomial time minimal model finding and
minimal model checking for a significant sub-
class of CNF theories which we call head-
cycle-free (HCF) theories. We then show how
variations of the elimination algorithm can be
applied for answering queries posed on dis-
junctive knowledgebases and disjunctive de-
fault theories in an efficient way. Finally, us-
ing techniques developed in database theory,
we argue that the tractable subsets identified
in this paper are quite expressive.

1 Introduction

Computing minimal models is an essential task in
many artificial intelligence reasoning systems, includ-
ing circumscription [McCarthy, 1980, McCarthy, 1986,
Lifshitz, 1985], default logic [Reiter, 1980], and min-
imal diagnosis [de Kleer et al., 1992], and in an-
swering queries posed on logic programs (under
stable model semantics [Gelfond and Lifschitz, 1991,
Bell et al., 1991]) and deductive databases (under the
generalized closed-world assumption [Minker, 1982]).
The ultimate goal in these systems is to produce plau-
sible inferences, not to compute minimal models. How-
ever, efficient algorithms for computing minimal mod-
els can substantially speed up inference in these sys-
tems.

Special cases of this task have been studied in the di-
agnosis literature and, more recently, the logic pro-

*Part of this work was done while the first author was a
student at the Cognitive Systems Lab, Computer Science
Department, UCLA, Los Angeles, California, USA.

Luigi Palopoli
DEIS
Universita della Calabria

87036 Rende (CS), Italy
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gramming literature. For instance, algorithms used in
many diagnosis systems [de Kleer and Williams, 1987,
de Kleer et al., 1992] are highly complex in the worst
case: to find a minimal diagnosis, they first compute
all prime implicates of a theory and then find a min-
imal cover of the prime implicates. The first task
is output exponential, while the second is NP-hard.
Therefore, in the diagnosis literature, researchers have
often compromised completeness by using heuristic ap-
proaches. The work in the logic programming litera-
ture (e.g., [Bell et al., 1991]) has focused on using effi-
cient optimization techniques, such as linear program-
ming, for computing minimal models. A limitation of
this approach is that it does not address the issue of
worst-case and average-case complexities.

Surprisingly, and perhaps due to its inherent dif-
ficulty, the problem has received a formal analy-
sis only recently [Papadimitriou, 1991, Cadoli, 1991,
Cadoli, 1992, Kolaitis and Papadimitriou, 1990,
Eiter and Gottlob, 1993, Chen and Toda, 1993,
Ben-Eliyahu and Dechter, 1993]. Given a proposi-
tional CNF theory T and an atom A in T, the following
tasks (and others) have been considered:

model finding Find a minimal model for T

model checking Check whether a
interpretation! is a minimal model for T'.

given

minimal entailment Is A true in all the minimal
models of T7?

minimal membership Is A true in at least one min-
imal model of T?

Unfortunately, the results of the formal work on the
complexities of reasoning with minimal models are
very discouraging. It turns out that even when
the theory is positive, that is, when the theory has
no clause where all the literals are negative, these
questions are very hard to answer: model finding is
PNP[O(logn)l_hard [Cadoli, 1992] (and positive theo-

!We take an interpretation to be an assignment of truth
values to the atoms in the theory.
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ries always have a minimal model!)2 model check-
ing is co-NP-complete [Cadoli, 1991{, minimal entail-
ment is co-NP-complete, and minimal membership is
¥8-complete [Eiter and Gottlob, 1993].

In this paper we introduce a basic property that turns
out to characterize classes for which the above prob-
lems and other related problems can be solved more
efficiently. The property is head-cycle freeness. The
idea is simple: a clause® can be viewed as having a
direction — from the negative to the positive literals.
This direction is made explicit in the way clauses are
represented in logic programs. We can then associate
a dependency graph with each theory: each atom is a
node in the graph, and there is an arc directed from A
to B iff there is a clause where A appears negative and
B positive. Then a theory will be called head-cycle free
(HCF) iff in its dependency graph there is no directed
cycle that goes through two different atoms that ap-
pear positive in the same clause. Head-cycle freeness
can be checked in quadratic time in the size of the
theory.

We will show that for positive HCF theories, most
of the above problems are manageable: model find-
ing and model checking can be done in O(n?) time,
where n is the size of the theory, and minimal mem-
bership is NP-complete. However, [Eiter, 1993] has
shown that for the minimal entailment problem, being
HCF does not help — the problem is co-NP-complete
even if you restrict the theories to being HCF. Our
results can be generalized quite naturally to compute
minimal Herbrand models of a significant subclass of
first-order CNF theories.

We will also show applications of the results we have
on CNF theories for answering queries on knowl-
edgebases that use disjunctive rules. More specifi-
cally, we will show an algorithm that computes effi-
ciently a stable model of an HCF stratified disjunc-
tive knowledgebase?. If the knowledgebase is proposi-
tional, the algorithm computes a stable model in time
polynomial in the size of the knowledgebase. We will
also demonstrate how we can use this algorithm for
answering queries posed on disjunctive default theo-
ries.

The last important question that we address is how
significant or, in other words, expressive is this class
of tractable theories. In database theory, the expres-
sive power of query languages is a much-studied topic.
Ideally, we would like to have a language that is easy
to compute but yet capable of expressing powerful

?[Chen and Toda, 1993) have recently characterized the
complexity of model finding as a NPMV//OptP[Olog n)-
complete task.

3In this section, a clause is a disjunction of literals. In
the sequel we will use a different syntax.

*Stable models and stratified knowledgebases will be
defined in the following sections.

queries. Using techniques developed in database the-
ory, we argue that the tractable subsets identified in
this paper are quite expressive.

2 The elimination algorithm for HCF
theories

In this section we introduce the elimination algorithm
(EA), which can be used to perform both model check-
ing and model finding on an HCF positive proposi-
tional theory in polynomial time.

We will refer to a theory as a set of clauses of the form
ANA2AN.ANAR DC 1 VCaV...VC, (l)

where all the A’s and the C’s are atoms®. The expres-
sion to the left of the D is called the body of the clause,
while the expression to the right of the O is called the
head of the clause. We assume that all the C’s are dif-
ferent. A theory is called positive if for every clause
n > 0. In this section we deal with positive theories,
unless stated otherwise. When n = 0 we take it as if
the clause is Ay A A2 A ...A A D false. When m =0
we take it as if the clause is true D C; VCa V...V C,.

With every theory T we associate a directed graph Gr,
called the dependency graph of T, in which (a) each
atom in T is a node, and (b) there is an arc directed
from a node A to a node C iff there is a clause in T in
which A is one of the A;’s and C is one of the C;’s.

As mentioned before, model finding for posi-
tive theories is PN Pto('“")l-hard, model check-
ing is co-NP-complete, and minimal membership is
¥h-complete. We will show that most of these prob-
lems are easier for the class of HCF theories. A theory
T is HCF iff there is no clause of the form (1) in T
such that for some C; and Cj, i # j, Gr contains a
directed cycle involving C; and Cj. So, for example,
the theory A D B, B D A, AV B is not HCF, while
the theory A D B, BD A, AvC is HCF.

Fact 2.1 Head-cycle freeness of a theory of size® n
can be checked in time O(n?).

Clearly, just any model for a positive theory can be
found very easily — take, for example, the set of all
atoms in the theory. What is difficult is finding a min-
imal model for the theory. Roughly speaking, the idea
behind the EA is as follows: we pick a model of the the-
ory and then eliminate from this model all the atoms
that we know will not be part of one of the minimal

®Note that the syntax of (1) is a bit unusual for a clause;
usually, the equivalent notation ~A; V-A43 V...V -4, V
Ci VC3 V..V C, is used. We chose the first notation
because it is closer to the way clauses are represented in
knowledgebases.

%The size of a theory is the number of symbols it
contains.
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EA(T)

Input: A positive HCF theory T. Output: A minimal
model for T.

1. M:=amodel of T; M' := 0.

2. Let A be the set of all clauses in T violated by M’
such that for each § € A |head(§, M)| = 1.
If A =48, go to step 3.
Else, let X := U,eAhead(&M); M =M + X;
M:=M-X;
repeat step 2.

3. Let A be the set of all clauses in T violated by M’
such that for each § € A, |head(6, M)| > 2.
If A =0, return M'.
Else, let H := | J,c,head(6, M) and let X C H be a
nonempty source of H in the dependency graph of
T;let M := M — X; go to step 2.

Figure 1: The elimination algorithm for HCF theories

models that are subsets of this model (Hence the name
of the algorithm).

Given a directed graph G and a set of nodes Y in the
graph, X C Y will be called a source of Y iff (a) all
the nodes in X are in the same strongly connected
component” in G, and (b) for each node A in Y — X,
there is no directed path in G from A to any of the
nodes in X. Intuitively, if X is a source of Y in a
dependency graph of some theory, then none of the
atoms in Y — X can be used to derive any of the atoms
in X. During the execution of the EA, we sometimes
need to eliminate from a model that is not minimal a
subset of a set of atoms. We always delete a source of
this set to prevent a situation where atoms that were
already eliminated turn out to be part of a minimal
model.

A set of atoms satisfies the body of a clause iff all the
atoms in the body of the clause belong to this set. A
set of atoms violates a clause iff the set satisfies the
body of the clause but none of the atoms in the head
of the clause belongs to the set. A set of atoms X is a
model of a theory if none of its clauses is violated by
X. A model X of a theory T is minimal if there is no
Y C X which is also a model of T. Given a set X,
|X| denotes the cardinality of X. The EA is shown in
Figure 1. It uses the function head(), which is defined
as follows: given a clause § and a set of atoms M,
head(§, M) is the set of all atoms in M that belong to
the head of é.

The proof of the next theorem appears in the appenix.
The proofs of the rest of the claims appear in the full
version of the paper [Ben-Eliyahu and Palopoli, 1993).

T A strongly connected component C of a directed graph
G is a maximal subgraph of G such that for each pair of
nodes v; and v2 in C, C contains both a directed path from
v1 to vz and a directed path from vz to v;.

Theorem 2.2 (the EA is correct) The EA gener
ates @ minimal model of the input theory.

Theorem 2.3 (nondeterministic completeness)
If M is a minimal model of an HCF theory T, then
there is an erecution of the EA that outputs M.

Theorem 2.4 (complexity) The EA for HCF the-
ories runs in time O(n?), where n is the size of the
theory.

The following example demonstrates how the EA
works.

Example 2.5 Suppose we have the theory
1. aVb 2. bDa 3.

And suppose we start the EA with M = {a,b,c}. At
step 1 of the EA, M’ = 0. At step 2 we get that
A =0, because the clauses violated by M’ are the first
and third clauses, but both atoms in their head belong
to M. Since A is emply, we go lo step 3, and in step
3 we get A := {aVbaVec} Since (b} is a source
of {a,b,c} (note that {c} is also a source), we delete
{d} from M and are left with M = {a,c}, and we go
1o step 2. In step 2 we now get A = {aV b}, so we
add {a} to M’ and delete {a} from M, which leaves us
with M' = {a} and M = {c}. We then repeat step 2,
but this time we get A = @ (because none of the rules
is violated by M') and so we go to step 3. In step 3 we
also have A = @, so the EA in this case returns {a}.
Indeed, {a} is @ minimal model for the theory above.

aVe

The previous example is of a theory having only one
minimal model. In the next example, the theory has
several minimal models.

Example 2.6 Suppose we have the theory

1. aVb
2. cVvd
3. aVe

And suppose we start the EA with M = {a,b,c}. At
step 1 of the EA, M’ = 0. Al step 2, we get that
A =0, because although all the clauses are violated by
M', all the atoms in their head belong to M. Since
A is emply, we go to step 3, and in step 3 we gel
A := {all the clauses}. Since both {a} and {b} and
{c} are source of {a, b, c}, we can delete from M any
one of them. Suppose we delete {b}. We are left with
M = {a,c}, and we go to step 2. In step 2, we now get
A = {aVbbVc}, so we add {a,c} to M’ and delete
{a,c} from M, which leaves us with M’ = {a,c} and
M = 0. We then repeat step 2, but this time we get
A =10, so we go to step 8. In step 3, we also have
A =0, so the EA in this case returns {a,c}. Indeed,
{a,¢} is a minimal model for the theory above. It is
easy to see that the EA could return {a,b} or {b,c},
had we selected {c} or {a} as a source, respectively.
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With minor modifications, the EA can also be used for
model checking. This is due to the fact that if we start
executing the EA with M initialized to some minimal
model, this will be the model that it outputs. Hence:

Theorem 2.7 The EA solves model checking for pos-
itive HCF theories in time O(n?), where n is the size
of the theory.

Also minimal membership is easier for HCF theories
than in general:

Theorem 2.8 Minimal membership for the class of
positive HCF theories is NP-complete®.

Before closing this section, we would like to address an
important issue raised by [Dechter, 1993]. Instead of
representing a theory as a set of clauses of the form (1),
we could have represented a theory as a set of clauses
of the form

AANAIAN L AALA-BLA-BaA...A-B DC (2)

where all the A’s, the B’s, and the C’s are atoms®.
We could then identify the class of stratified theories
in a way that is parallel to the way stratified knowl-
edgebases are defined!?. It is well known that if a
logic program is stratified, a minimal model for this
program (namely, the one coinciding with its perfect
model) can be found in linear time [Apt et al., 1988].
Therefore, it is quite immediate that a minimal model
for stratified theories can be found also in linear time.
But what is the relation between HCF theories and
stratified theories? Qur conclusion is that HCF theo-
ries are strictly more general than stratified theories.
By a simple local syntactic transformation, namely,
by moving all the B’s to the head (as disjunctions),
every stratified theory (with no clauses with empty
heads) can be converted into a positive HCF theory.
For example, the stratified theory {—a D b,—b D ¢} is
logically equivalent to the HCF theory {a V b,bV c}.
However, as the following example illustrates, there is
no such straightforward local translation of positive
HCF theories into stratified theories.!!.

Example 2.9 Consider the following HCF theory T':
avb, ade bve

The following theory, T, is obtained by moving all but
one of the atoms from the head of the clause to the

®Membership in NP was already shown in
[Ben-Eliyahu and Dechter, 1992); we show NP-hardness.

?[Schaerf, 1993) advocates a semantics for positive dis-
junctive databases which is based on considering all normal
logic programs that can be obtained from the database us-
ing this transformation.

19For a formal definition of stratification see next section.

1 Actually, another variation of the elimination algo-
rithm can be used for finding for each HCF theory an equiv-
alent stratified theory that can be obtained by shifting all
but one of the atoms from the head to the body.

body:

-bDa, adec -¢cDd

However, T’ is nol stralified.

Moreover, note that while the algorithm for strati-
fied theories will yield one specific model, the EA
is capable of generating any minimal model and
can also be used for model checking.  Another
interesting observation is that the class of Horn
theories, for which a unique minimal model can
be found in linear time [Dowling and Gallier, 1984,
Itai and Makowsky, 1987], intersects the class of HCF
theories but neither of these classes includes one
other!2.

3 The elimination algorithm for
first-order HCF theories

In this section we show how we can generalize the EA
so that it can be used to perform efficiently both model
checking and model finding on a first-order positive
HCF theory.

One way to go is to write an algorithm that is similar
to the one presented in figure 1 but works on first-
order theories. If we restrict our attention to positive
theories only, such an algorithm would work exactly
like the algorithm we present in the next section. In
this section, however, we present a different variation
of the EA. The version presented here does not re-
quire to construct an arbitrary model before finding a
minimal one.

We will now refer to a theory as a set of clauses of the
form

V(Xl, ...,Xn)Al ANAIAN...ANAR DC1VCaV...VC, (3)

where all the A’s and the C’s are atoms in a first-order
language with no function symbols, and X}, ..., X, are
all the variables that appear in the clause. We will
often write (3) simply as

AlAAzA---AAmDC]VCZV---VC", (4)

keeping in mind that all the variables are universally
quantified. The definitions of head, body, and posi-
tive theories are the same as for propositional theories.
In the expression p(Xy,..., Xy), p is called a predicate
name.

As in the propositional case, with every theory T we
associate a directed graph Gr, called the dependency
graph of T, in which (a) each predicate name in T is
a node and (b) there is an arc directed from a node A

to a node C iff there is a clause in T in which A is a

2Consider, for example, the theories Ty = {a}, Tz =
{~a}, T3 = {a V}}: T is both Horn and positive HCF, T;
is Horn but not positive, and T3 is positive HCF but not
Horn.
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EAx(T)

Input: A safe first-order positive HCF theory T. Out-
put: A minimal Herbrand model for T.

1. M:=40.

2. Let A be the set of all instances of definite clauses in
T not satisfied by M. If A =@, go to step 3.
Else, let X := UaeA head(6); M :=M + X;
repeat step 2.

3. Let A be the set of all instances of disjunctive clauses
in T not satisfied by M. If A = @, return M.
Else, let H := U6€A name-head(6), and let X C H
be a nonempty source of all the predicate names in
H in the dependency graph of T'; from each § in T,
delete from the head all atoms with predicate names
that appear in X; goto step 2.

Figure 2: The elimination algorithm for safe first-order
HCF theories

predicate name in one of the A;’s and C is a predicate
name in one of the C;’s.

A theory will be called safe if each of its rules is safe. A
rule is safe iff all the variables that appear in its head
also appear in its body. In this section we assume that
theories are safe and positive. A theory T is HCF iff
there is no clause of the form (3) in T such that for
some C; and Cj, i # j, Gt contains a directed cycle
involving the predicate name of C; and the predicate
name of Cj.

Fact 3.1 Head-cycle freeness of a theory of size'® n
can be checked in time O(n?).

3.1 Model finding

In figure 2 we present a variation of the EA, called
EAx (F for “first-order”), that computes a minimal
Herbrand model !* of a positive first-order HCF the-
ory. The algorithm EA r uses the functions head() and
name-head(). Given a clause §, head(6) will return
the set of atoms that appear in the head of §, and
name-head(§) will return the set of predicate names
that appear in the head of §. Thus, for example, if
6 = a(X) V ¥(X)—c(X), head(§) = {a(X),b(X)},
and name-head($) = {a,d}.

A clause is called definite iff it contains exactly one
atom in the head. We call a clause disjunctive iff it
contains at least two atoms in the head.

13The size of a theory is the number of symbols it
contains.

14The set of all atoms constructed using predicate names
and constants from a given theory T is called a Herbrand
base of T. A Herbrand model of T is a subset of the Her-
brand base that satisfies all the instances of the clauses of
the theory.

The proofs for the following claims appear in the full
version of the paper [Ben-Eliyahu and Palopoli, 1993].

Theorem 3.2 (EAr is correct) EAx generates a
minimal Herbrand model of the input theory.

The following example shows how EA r works.

Example 3.3 Suppose we have the theory

1. a(s)Vvd(s) 2 b(X)Da(X)

3. a(s)ve(s) 4. a(X)Dd(X)
At step 1 of the EA, M = 0. At step 2 we get
that A = 0, because the clauses that are violated

by M are I and 3 but they are not definite. Since
A is empty, we go to step 3, and in step 3 we gel
A = {a(s) V b(s),a(s) V c(s8)}. Since {b} is a source
of {a,b,c} (note that {c} is also a source), we delete
{b(s)} from clause 1, and are left with the theory
a(s),b(X) D a(X),a(s)Ve(s),a(X) D d(X)}, and we
go to step 2. In step 2 we now get A = {a(s)},
so we add a(s) to M, and repeat step 2. Since now
M = {a(s)}, the only instance of a clause violated
by M is a(s) D d(s) (which we get by instantiating
X to s in clause §). So we add d(s) to M and get
M = {a(s),d(s)}. Since there are no more instances
of a clause violated by M, the algorithm will stop and
return M. Indeed, {a(s),d(s)} is a minimal Herbrand
model for the theory above.

The complexity of the EA for first-order HCF theories
can be analyzed using the same principles by which
the data complezity of a query language over a rela-
tional database under some fixed semantics is defined
[Vardi, 1982].

A given safe first-order theory T can be divided into
two disjoint sets [Reiter, 1978]: the intentional com-
ponent, which represents the reasoning component of
the theory, and the eztensional component, which rep-
resents the collection of facts in the theory. For our
purposes, the extensional part of a given theory T,
denoted Tg, is the set of all clauses with an empty
body and grounded atoms only in the head, and the
intentional part of T, denoted Ty, is simply T — Tg.
For example, in the theory presented in example 3.3,
clauses 1 and 3 form the extensional component, and
clauses 2 and 4 form the intentional component. If we
analyze how the complexity of EA r changes when we
fix T; and vary Tg, we discover the following:

Theorem 3.4 Using the algorithm EAx, a minimal
model of a safe first-order HCF theory T(Tg) =
TiUTE can be found in time polynomial in the size
of Tg.

Note that this variation of the EA is not nondeter-
ministically complete, that is, there are some minimal
models that cannot be generated by this algorithm.
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model-check(T, M)
Input: A safe first-order positive HCF theory T, and a

Herbrand model M. Output: If M is a minimal
Herbrand model for T — YES, else — NO.

1. M':=0.

2. Let A be the set of all instances of clauses in T vi-
olated by M. If A # @ return NO (* M is not a
model *).

3. Let A be the set of all instances of clauses in T vio-
lated by M’ such that for each § € A, |head (5, M)|
==1. If A =9, go to step 4.

Else, let X := U&eA head(6, M); M' := M' + X;
repeat step 3.
4. If M == M’ return YES; else, return NO.

Figure 3: Model checking for safe first-order HCF the-
ories

Consider, for example, the theory T = {aVc, bAc D a}.
Clearly, both {a} and {c} are minimal models of T,
but since {c} is a source of {a} in the dependency
graph of T, the model {c¢} will never be generated by
the algorithm in figure 2. Note, however, that both
the algorithm in figure 1, and the algorithm in figure
4 (Section 4.1) are nondeterministically complete and
that both have an execution that outputs {c}. We con-
jecture that algorithm EA r can generate any minimal
model that is also a minimal model of a stratified the-
ory which is logically equivalent to the input theory.

3.2 Model checking

The algorithm model-check in figure 3 performs model
checking for safe first-order positive HCF theories.
Note that in contrast with the EA in figure 1 this
algorithm does not use the dependency graph of the
theory.

Theorem 3.5 (correctness) Given an HCF safe
theory T and a Herbrand model M, model-check(T, M)
will return YES iff M is a minimal Herbrand model of
T.

Again, by distingushing between the extensional and
intentional componenets of the theory, we can show
that algorithm model check is efficient.

Theorem 3.6 (complexity) Model checking for a
safe first-order HCF theory T(Tg) = Teg|JT; can be
done in time polynomial in the size of Tg.

4 Applications of the elimination
algorithm
4.1 Application to disjunctive
knowledgebases

In this section we will show that a variation of the EA
can be used to efficiently answer queries posed on dis-
Jjunctive knowledgebases. We will refer to a disjunctive

knowledgebase (DKB) as a finite set of rules of the form
Ci|Cz|...| Cae—Ay,...,Am, not By, ...,not By (5)

where all the A’s, the B’s, and the C’s are atoms over
a first-order language with no function symbols. With-
out loss of generality, we assume that all of the C’s are
different. The symbol “ | ” is used instead of the clas-
sical “v” in order to emphasize that here disjunction
is used in a slightly different manner than in classical
logic. The B’s are called negative predicates, the A’s
— positive predicates.

A DKB is a positive DKB iff t = 0. A DKB will
be called safe if each of its rules is safe. A rule
is safe iff all the variables that appear in its head
or in negative predicates in its body appear also in
positive predicates in its body. So, for example,
the rule 5(X)——not a(X) is not safe, while the rule
b(X)—c(X), not a(X) is. In this section we restrict
our attention to safe DKBs. The dependency graph of
a DKB KB, denoted G g p, is defined similarly to that
of a theory: Each predicate name in KB is a node, and
there is an arc directed from a node A to a node C iff
there is a rule in KB in which A is a predicate name
in one of the A;’s and C is a predicate name in one of
the C;’s. Note that when we construct the dependency
graph, the B;’s in (5) are ignored. A Head-cycle-free
DKB (HDKB) is also defined in analogy to HCF theo-
ries: a DKB KB is HCF iff there is no rule of the form
(5) in KB such that for some C; and Cj, i # j, Gr
contains a directed cycle involving the predicate name
of C; and the predicate name of Cj.

Fact 4.1 Head-cycle freeness of a DKB of size n can
be checked in time O(n?).

Following [Przymusinski, 1988], we define a stratified
DKB (SDKB) to be a DKB where it is possible to
partition the set S of predicate names into subsets
{So,...,S}, called strata, such that for each rule §
of the form (5),

1. all the C’s that appear in the head of § have the
same stratum index ¢,

2. the strata indexes associated with the A’s are
smaller than or equal to ¢, and

3. the strata indexes associated with the B’s are
strictly smaller than c.

So, each SDKB KB is associated with at least one
partition of its predicate names into strata. For every
feasible stratification {So,...,S,} of KB’s predicate
names (r > 1), we can partition the rules of KB into
corresponding subsets { KB, ..., KB,} such that KB;
contains the rules having in their heads predicates that
are in the stratum S;. (We assume w.l.o.g. that Sp
contains the predicates not appearing in the head of
any rule.)

A model for a DKB is a subset M of its Herbrand
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base!® having the property that, for every rule in the
grounded knowledgebase, if all the atoms in the body
of the rule belong to M, then at least one of the atoms
in the head of the rule belongs to M.

Several different semantics have been proposed
for DKBs [Przymusinski, 1988, Przymusinski, 1991,
C. Baral and Minker, 1991,

Gelfond and Lifschitz, 1991, Dix, 1992]. Notably, all
these semantics agree on identifying the minimal mod-
els of a positive DKB to define its intended meaning.
The same holds for stratified knowledgebases: all the
semantics that handle SDKBs agree on identifying the
stable models of a SKDB as its intended meaning. In-
tuitively, a model for a DKB is stable if it is minimal
and if you can prove each atom in the model using the
rules in the knowledgebase. Formally:

Definition 4.2 (stable model)
[Gelfond and Lifschitz, 1991]

Suppose KB is a variable-free DKB. If KB has no oc-
currence of “not ”, then the set of all its stable models
is the set of all its minimal models.

If “not ” occurs in KB, then its stable models are de-
fined as follows: for any subset S of the atoms in KB,
define KBS 1o be the DKB obtained from KB by delet-
ing
1. all formulas of the form “not B” where B ¢ S
from the body of each rule and
2. each rule that has in its body a formula “not B”
for some B € S.

If S is one of the minimal models of KB° (KB°® has
no “not ”), then we say that S is a stable model of
KB. To apply the definition to a DKB with variables,
we first have to replace each rule with its grounded
instances.

A DKB may have none or several stable models. We
claim that sometimes it is enough to compute only
one arbitrary stable model of a DKB. For example,
consider the following DKB KB that solves the 3-
colorability of a graph represented in an obvious way
by the relations vertex() and edge() (g, y, and r stands
for green, yellow, and red, respectively):

color(X, g) | color(X,r) | color(X,y)—vertez(X)
ERROR+——edge(X,Y), color(X, Z), color(Y, Z)
color(X, r)—uvertez(X), ERROR
color(X,y)—uvertez(X), ERROR

color(X, g)—vertez(X), ERROR

The reader can verify that the graph is not 3-colorable
iff every stable model of KB contains the atom ER-
ROR, and if the graph is colorable, each of the stable

15Roughly speaking, the Herbrand base of a knowledge-
base is the set of all grounded atoms that can be formed
out of symbols appearing in the knowledgebase.

EA«(KB)
Input: An SHDKB KB.
Output: A stable model for KB.
1. Partition KB into strata KB;,..., KB,.
2. M:=0.
3. For i:=1to r, do:
(a) Let A; be the set of all instances of rules
from KB; that are not satisfied by M.
(b) Eliminate all the negative literals from the
rules in A;.
(c) M' := EA(A;U{P— | P € M}).
If M' # M, then set M := M’ and goto
step 3 (a).

Figure 4: The elimination algorithm for SHDKBs

models of KB will encode a legal coloring of the graph.
Therefore, to solve the 3-colorability of a graph, it is
enough to compute an arbitrary stable model of KB.

The previous DKB is not HCF. Here is an example of
a HDKB:

Example 4.3 The CEO of a company decides that a
Christmas sweepstakes is to be held, with one prize of
10,000 dollars to be divided among the winners; the
only constraint is that no two winners be employed
by the same department. Each stable model of the
following stratified HDKB encodes a feasible outcome
of the sweepstakes, and therefore it is enough to con-
sider one arbitrary stable model of the knowledgebase.
The knowledgebase assumes the ezistence of the 2-
place predicate inDep, where inDep(D, X) is true iff
X works in department DS,

eliminate(X) | eliminate(Y) «— inDep(D, X),
inDep(D,Y),
X#Y
candidate(X) «— inDep(D, X),
not eliminate(X)
win(X) | noWin(X) «— candidate(X)

In figure 4 we show an algorithm called EA*, which
computes one arbitrary stable model of a stratified
HDKB (denoted SHDKB). The basic idea is to par-
tition the DKB according to its stratification and then
call the EA on each subset in the order implied by the
stratification.

Note that EA=* calls the EA as a subroutine. In fact,
any other polynomial algorithm capable of computing
one minimal model of a propositional positive HCF

%In the full paper [Ben-Eliyahu and Palopoli, 1993] we
analyze in detail how this knowledgebase performs this
task.
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theory could be used in place of the EA without influ-
encing any of the properties of EAx. As yet, however,
the EA is the only algorithm that we know of that can
perform this task in polynomial time on the entire class
of propositional positive HCF theories. Properties of
EAx* are summarized next.

Theorem 4.4 Let KB be an SHDKB. Then:

1. (correciness) EAx generates a stable model of
KB.

2. (nondeterministic completeness) If M is a
stable model of KB, then there is an ezecution of
the EAx that outpuis M.

Corollary 4.5 Let KB be a nondisjunctive stratified
knowledgebase. Then EAx(KB) yields the unique sta-
ble model for KB.

The following example shows how the EA* works.

Example 4.6 Suppose that we have the following
stratified knowledgebase KB:

1. a(s) | b(s)— 2. ¢(X)—b(X),not a(X)
3. a(r) | bo(r)— 4. d(X) | e(X)—c(X)

Assume we adopt the following stratification: S = @,
S1 = {a,b}, S2 = {c,d,e}. At step 1 of the EAx, we
compute the rule stratification. In this case, KBy con-
sists of the first and third rules, and KB, consists of
rules 2 and 4. After setting M = @ (step 2), we start
the for loop in step 3. In step 3a, Ay is set to KBy, and
it is not changed after step 3b. In step 3c, we apply
the EA to A,. Assume that EA(A,) = {a(r),b(s)}.
Since we get M' # M, we set M to {a(r),b(s)} and
go to step 3a. Since now both rules in KB, are sat-
isfied by M, nothing is changed in steps 3b and 3c
and we repeat the for loop in step 3 withi = 2. In
step 3a, A3 is instantiated to {c(s)—b(s)not a(s)}.
In step 3b, A, is set to be {c(8)—b(s)} (since a(s) is
not in M), and in step 3c, the EA is called to find a
minimal model of the theory {a(r), b(s), c(s)—1b(s)}.
The EA will then return {a(r),b(s),c(s)}, and since
M' # M we go to step 3a. A will be now set to
{d(s) | e(8)+~—c(8)}, and it will not be changed in step
3b. In step 3c, the EA will be called with the the-
ory {a(r), b(s),c(s),d(s) | e(s)—c(s)}, and suppose
that it will return {a(r), b(s), c(s),d(s)}. Again, we
get that M' # M and will go to step Sa. This time,
Az will be set to @ in steps Sa and 3b and therefore
the algorithm will stop with M unchanged. Indeed,
{a(r),b(s), c(s),d(8)} is @ minimal model of KB. The
reader can verify that for every other minimal Her-
brand model of KB, there is an ezecution of EAx that
returns this model.

As in the case of first-order theories (Section 3), a
given SHDKB KB can be divided into two disjoint
sets [Reiter, 1978]: the intentional component, which
represents the reasoning component of the knowledge
base, and the extensional component, which represents

the collection of facts in the database. For our pur-
poses, the extensional part of a given KDB KB, de-
noted KBE, is the set of body-free rules such that all
the predicates that appear in the head are grounded,
and the intentional part of KB, denoted KBy, is sim-
ply KB — KBg. If we analyze how the complexity of
the EAx changes when we fix KBy and vary KBg, we
discover the following;:

Theorem 4.7 Using the EA*, a stable model of an
SHDKB KB(KBg) = KB\ JKBE can be found in time
polynomial in the size of KBEg.

When applied to propositional SHDKBs, EAx* is poly-
nomial in the size of the entire knowledgebase:

Theorem 4.8 Using the EA«+, a stable model of a
propositional SHDKB can be found in time O(n?),
where n is the size of the knowledgebase.

4.2 Application to disjunctive default logic

Disjunctive defaull logic is a generalization of Reiter’s
default logic introduced by [Gelfond et al., 1991] in or-
der to overcome some of the difficulties that Reiter’s
default logic has when dealing with disjunctive infor-
mation. Gelfond et al. define a disjunctive default
theory as a set of disjunctive defaults. A disjunctive
default is an expression of the form

a:fiy..eyBn
PAES (6)

where a,8,...,0,, and 7,...,7m are quantifier-
free formulas in some first-order language. Gelfond
et al. define an extension for a disjunctive default the-
ory A to be one of the minimal deductively closed set
of sentences E’ satisfying the condition!7 that, for any
grounded instance of a default (6) from A, if a € E’
and -f,...,70, ¢ E, then for some 1 < i < m,
¥i € E'.
Let us now consider the subset of disjunctive default
theories that we call disjunctive default programs. A
disjunctive default program (DDP) is a set of defaults
of the form

AiAN..ANAp :B,y,...,mBs
7
Gil.ICn ™

in which each of the A’s, the B’s, and the C’s is
an atom with no function symbols and n > 0. Each
such DDP A can be associated with a DKB KBa by
replacing each default of the form (7) with the rule
C\|...|Ca—A1, ..., Am, nol By, ..., not B;.

The following theorem implies that all the techniques
and complexity results established with respect to
DKBs also apply to DDPs.

Theorem 4.9 [Gelfond et al., 1991] Let A be a
DDP. The logical closure of E is an ertension of A
iff E is a stable model of KBa.

1"Note the appearance of E in the condition.



Reasoning with Minimal Models: Efficient Algorithms and Applications 47

So, in particular, we can conclude that for the class of
DDPs computing an extension is PNPIOUegn) hard,

checking whether a set of atoms is an extension is co-
NP-hard, and deciding whether an atom belongs to
some extension is j-hard.

Let us call a DDP completely ordered iff its correspond-
ing DKB is stratified and head-cycle free'®. Then, us-
ing the results in previous sections, we can identify
subclasses of DDPs that are more manageable than
the whole class of DDPs.
Theorem 4.10 Let A be a propositional completely
ordcrcd DDP, and let n be its size'®. Then:
. An extension for A can be found in time O(n?).
2. We can check whether a set of atoms is an exten-
sion of A in time O(n?).
3. Deciding whether an atom belongs to some exten-
sion of A is NP-complete.

Using the results of [Ben-Eliyahu and Dechter, 1992],
one can easily show that each completely ordered DDP
A corresponds to a default theory A’ in the sense of
Reiter, such that E is an extension of A iff it is an
extension of A’. Using this observation, we show in
the full paper how theorem 4.10 leads to the discovery
of tractable subsets of Reiter’s default theories.

The results of this paper can also be extended to deal
with first-order disjunctive default theories, using the
same principles by which the EA for CNF proposi-
tional theories was generalized to deal with first-order
theories.

5 Expressive power of stratified
knowledgebases

Since we can compute a stable model of an SHDKB in
polynomial time, it is clear that unless we discover that
P = NP, we cannot encode either NP-hard or co-NP-
hard problems in an SHDKB in such a way that any
stable model of the SHDKB will provide a solution
to the problem. Nevertheless, we will show in this
section that the class of SHDKBs (under stable model
semantics) is quite expressive. We believe that this
indicates that the class of HCF theories identified in
Sections 2 and 3 are a significant subclass of all CNF
theories.

The expressive power of logic languages has been given
a lot of attention in database theory recently (see
[Abiteboul and Vianu, 1992] for a survey). Follow-
ing the database theory approach, we define a (non-
deterministic) query to be a generic transformation
from an input database to a set of output relations,
each of which denotes a possible outcome of the query
on the database. For the sake of this exposition, we

31n the full paper we define “completely ordered” DDPs
directly, i. e. , without first mapping them to their corre-
sponding knowledgebases.

19We measure the size of a DDP by the number of sym-
bols it contains.

will assume that a database is a relational database
that can be viewed as a knowledgebase in an obvious
way (i. e. , each relation is a predicate name, and each
tuple (ci,...,¢n) in the relation P is represented by
a body-free rule P(cy,...,cn)—). We can also con-
versely look at a set of atoms as denoting a relational
database, in the obvious way.

A knowledgebase can be viewed as a mapping of an
input database into a set of output databases. Given
an input database DB and a knowledgebase KB, the
set of output databases is defined (under the stable
model semantics) to be the set of all stable mod-
els of KBJDB. Viewing the knowledgebase as such
a mapping, we shall say that an SHDKB KB ez-
presses a query Q (under the stable model seman-
tics) iff, for every database DB, (R € Q(DB)) &
(3M stable model of DB\ JKB such that R € M). We
shall say that an SHDKB KB weakly ezpresses
a query Q (under the stable model semantics)
iff, for every database DB, (R € Q(DB)) =
(3M stable model of DB JKB such that R € M).
Less formally, we will say that an SHDKB KB (resp.
weakly) expresses a query Q under the stable model
semantics iff for every database DB, every (resp. some)
stable model(s) of KB|JDB encodes a possible result
of the query, and, conversely, each possible result of
the query is encoded in some stable model.

Stratified knowledgebases (under the stable model
semantics) are capable of expressing all polyno-
mial time computable queries if a total ordering
of the domain (the set of all constants in the
input database) is provided [Papadimitriou, 1985,
Ben-Eliyahu and Palopoli, 1994). So, in the case
where this ordering is available, SHDKB’s under sta-
ble model semantics would express all polynomial time
queries, since the class of SHDKBs is a superset of
the class of stratified knowledgebases. However, it
is known that stratified knowledgebases are not ex-
pressive enough to “construct” an ordering on the do-
main if the ordering is not available. We leave it open
whether SHDKBs are expressive enough to construct
such an ordering. In the full paper we show that
any polynomial time query can be weakly expressed
by an SHDKB under the stable model semantics?°.
The above discussion is summarized in the following
theorem:

Theorem 5.1

1. For every polynomial time computable query Q
there erists an SHDKB KB that weakly ez-
presses Q under the stable model semantics.

2. For every polynomial time computable query Q
over an input database with an ordered domain,

%The proof is based on simulating the well-known
witness operator [Abiteboul and Vianu, 1992] using an
SHDKB.
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there ezists an SHDK B KB that expresses Q un-
der the stable model semantics.

6 Related work

The class of head-cycle-free DKBs was introduced by
[Ben-Eliyahu and Dechter, 1992], where it was shown
that queries on propositional HDKBs can be answered
by solving the classical satisfiability problem. Cadoli
[Cadoli, 1992, Cadoli, 1991] has described a partition
of the set of propositional theories into classes for
which model finding and model checking is tractable
or NP-hard. His partition is based on considering the
set of logical relations that correspond to the theory,
and it is not clear whether these tractable classes can
be identified effectively. Other efficient algorithms for
finding minimal models of propositional CNF theories
can be found in [Ben-Eliyahu and Dechter, 1993]. The
expressive power of the tractable subsets identified in
both of the above works was not analyzed yet.

7 Conclusion

The task of computing minimal models is of interest to
the AI community as well as to the logic programming
community. In circumscription, default logic, diagno-
sis, and commonsense reasoning in general, the task
of computing minimal models has been proven to be
crucial to speeding up the reasoning process.

In this paper we have introduced the elimination al-
gorithm, which performs in polynomial time minimal
model finding and minimal model checking for a sig-
nificant subclass of CNF theories. We have demon-
strated how variations of the elimination algorithm can
be applied for answering queries posed on disjunctive
knowledgebases and disjunctive default theories in an
efficient way, and we have shown that the tractable
classes identified in this paper are quite expressive.

It has been argued that sometimes it is useful to use
a “vivid” form of the knowledge in order to perform
deductions rapidly, where a vivid form of a theory
would be some data structure in which the informa-
tion is stored in a way that enables fast answers to
commonly asked queries [Levesque, 1986]. One ap-
pealing idea, suggested by [Halpern and Vardi, 1991},
[Papadimitriou, 1991], and others, is that a vivid
form of a theory need only be a model of the the-
ory. In this case, deduction can be replaced by
model checking, which is often the much easier task.
Since a theory might have an exponential number
of models, only the models that “best” represent
the theory, namely, the models that are the clos-
est to the real world, should be selected. One ap-
proach, adopted in circumscription, for example, is
to select the minimal models of a theory as its vivid
form. We argue, as do others [Giannotti et al., 1991,
Saccd and Zaniolo, 1990, Abiteboul et al., 1990], that
sometimes even only one arbitrary minimal model of
a theory can be used for fast query answering. The

work presented here is a step toward efficient imple-
mentation of such ideas.

Appendix
A Proofs

First, we need to present some definitions and known
theorems.

Following [Ben-Eliyahu and Dechter, 1992], we define
a proof of an atom to be a sequence of clauses that can
be used to derive the atom from the theory. Formally,
an atom A has a proof w.r.t. a set of atoms M and
a theory T iff there is a sequence of clauses 6, ...,6,
from T such that
1. for each clause §;, one and only one of the atoms
that appear in its head belongs to M (this atom
will be denoted hps(6;)),

2. A= hpy(bs),
3. the body of each §; is satisfied by M, and
4. 6; has an empty body and, for each i > 1, each
atom that appears positive in the body of §; is
equal to hp(6;) for some 1 < j < i.
The following theorem, by Ben-Eliyahu and Dechter,

will be used to prove the correctness of the elimination
algorithm:
Theorem A.1 [Ben-Eliyahu and Dechter, 1992] A
set of atoms M is a minimal model of an HCF the-
ory T iff

1. M satisfies each clause in T, and

2. for each atom A in M, there is a proof of A w.r.t
T and M.

Proof of Theorem 2.2

First, we prove the following Lemma:

Lemma A.2 The following invariants hold through-
out the execution of the algorithm EA:

1. Every atom in M' has a proof w.r.t M’ and T.

2. For each clause violated by M', there is an atom
in its head that belongs to M.

It is easy to observe that claim no. 1 holds - we start
the algorithm with M’ = @ and whenever we add an
atom A to M’ it is the case that there is a clause 6
in T such that all the atoms in the body of é belong
to M' and A is the only atom in the head of § which
belong to M{JM'. Atoms are added to M’ only if they
belong to M. Therefore, we conclude each atom in M’
there is a proof w.r.t T and M’.

Claim no. 2 sure holds when we finish step 1 of the
algorithm, because M is a model of T. Now we will
show that if the claim holds just before we execute
the command “M := M — X” in steps 2 and 3 , it
holds after we execute this command. Suppose we have
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executed the command M := M — X in step 2. Divide
the group of clauses violated by M’ before executing
the command into two groups: in group A there are
all the clauses violated by M’ which have and atom
from X in their head. In group B there are clauses
violated by M’ which do not have an atom from X in
their head. Since just before executing the command
M := M — X in step 2 we did M’ := M'+ X, group A
must be empty. Since before executing M := M - X
for each clause in group B there was an atom in its
head that belonged to M, also after executing M :=
M — X it must be the case that for each atom in group
B there was an atom in its head that belongs to M.

Now, suppose we execute the command M := M - X
in step 3. Note that before executing this command it
is the case that all the clauses in A, the set of all clauses
violated by M, has at least two atoms that belong to
M. Now, it cannot be the case that there are two
atoms from the head of the same clause that belong to
X, because T is head-cycle-free and all the atoms in X
are in the same strongly connected component in the
dependency graph of T. So it must be the case that
after executing the command M := M — X in step 3
claim no. 2 holds.

Now to the proof of theorem 2.2:

It is easy to see that the elimination algorithm termi-
nates. It is enough to show then that when the al-
gorithm terminates, M’ is a minimal model of T. By
Theorem A.1, it is enough to show that when the EA
terminates,

1. M’ is a model, and
2. every atom in M’ has a proof w.r.t M’ and T.

We proved in Lemma A.2 that (2) holds. In view of
Lemma A.2 (2), it is easy to see that (1) holds as well.
Hence, M’ is a minimal model of T'. O
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Abstract

I present a method for reasoning about spa-
tial relationships on the basis of entailments
in propositional logic. Formalisms for rep-
resenting topological and other spatial in-
formation (e.g. [2] [10] [11]) have gener-
ally employed the 1st-order predicate cal-
culus. Whilst this language is much more
expressive than O-order (propositional) cal-
culi it is correspondingly harder to reason
with. Hence, by encoding spatial relation-
ships in a propositional representation auto-
mated reasoning becomes more effective. I
specify representations in both classical and
intuitionistic propositional logic, which — to-
gether with well-defined meta-level reasoning
algorithms — provide for efficient reasoning
about a large class of spatial relations.

1 INTRODUCTION

This work has developed out of research done by Ran-
dell, Cui and Cohn (henceforth RCC) on formalising
spatial and temporal concepts used in describing phys-
ical situations [11]. A set of classical 1lst-order logic
axioms has been formulated in which a large num-
ber of spatial and temporal relations can be defined
[10). One problem with this formalism is that com-
puting inferences in the theory is far from easy — see
e.g. [12]. Of course one can use any general purpose
1st-order theorem prover, but the complexity of the
theory means that for many significant problems this
approach is impractical.

In this paper I present an alternative approach to the
logical representation of spatial relationships. Whilst
the system of relations that are represented is essen-
tially the same as that identified by the RCC work,
the way in which they are represented is substantially
different. Rather than using 1st-order logic, spatial re-
lations are encoded into purely propositional formulae
together with certain meta-level constraints concern-

ing entailments between these formulae. I show first
how a limited set of relations can be defined by means
of classical propositional logic and then show how by
using intuitionistic logic a more expressive representa-
tion is obtained.

The main motivation for using this alternative ap-
proach is that automated reasoning becomes far more
efficient. In fact, given a finite set of spatial rela-
tionships characterisable in the propositional repre-
sentation, there is an effective procedure for deciding
whether this set describes a possible situation.

This paper can be regarded as a response to the chal-
lenge laid down in [12] (Computing Transitivity Tables:
a challenge for automated theorem provers). However
the approach taken is quite different from that envis-
aged in [12] in that, rather than enhancing or adapting
a lst-order theorem prover to suit the domain of spa-
tial reasoning, a substantially different logical system
is used to reason about this domain.

Since the taxonomy of spatial relations which I rep-
resent is identical to a family of relations dealt with
in the RCC work, I use the same names to refer to
these relations. Figure 1 gives 2-dimensional examples
of the set of 8 jointly exhaustive and pairwise-disjoint
relations which forms the basis of a lattice of topolog-
ical relations definable in the RCC formalism (see [10]
for more details).

)
o5 B > @

DC(A,B) EC(A,B) TPP(A,B) TPP-!(A,B)
()
PO(A, B) EQ(A.B) NTPP(A,B) NTPP-'(A,B)

Figure 1: Basic Relations in the RCC Theory
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1.1 PRELIMINARY DEFINITIONS

We shall need some precise terminology for referring
to topological relationships and expressions describing
those relationships:

e A space is a non-empty set. (In the intended in-
terpretation the space will be the set of points
constituting Cartesian 3 dimensional space.)!

o A situationis a triple (/ , Z, f), where U is a space,
X is a set of constant symbols and f is an assign-
ment function which maps each constant in ¥ to
a subset of Y.

o A situation-description is a triple (£, X, ©), where
L is a logical language whose vocabulary includes
the constant symbols ¥ and whose semantics in-
terprets these symbols as denoting sets; © is a
theory expressed in L.

e A situation (U,X,f) ezemplifies a situation-
description (L, L, ©) iff the assignment f of sub-
sets of U to the constants L (together with some
auxiliary assignment to any non-logical symbols
of L occurring in © but not in X) satisfies © ac-
cording to the semantics of L. 2

o A situation-description (L, X, ©) is impossible iff
it is not exemplified by any situation ({/ , X, f).

2 TOPOLOGICAL
INTERPRETATION OF
PROPOSITIONAL LOGIC

There is a close connection between classical proposi-
tional calculus, which I shall refer to as Cp, and set
theory (8, pl4]. The simplest semantics for Cp is to
take propositions as denoting truth values and to cor-
relate the connectives with truth functions. However,
if we interpret propositional letters as denoting arbi-
trary subsets of some universal set & and the connec-
tives -, A and V respectively as the set operations
complement, intersection and union then the classical
tautologies will be those formulae whose value is U
whatever the assignment of set values to propositional
letters. To give content to this interpretation one can
regard U as a set of all possible worlds. Then propo-
sitional letters denote the set of worlds in which they
are true.

'We shall later adopt a richer notion of space: what
mathematicians call a topological space. This is a pair
(U,3), where s is a function which maps subsets of U to
their interiors.

2This eremplification relation is very similar to but
slightly more general than the usual satisfaction relation
between models and theories. It allows one to speak of
models as satisfying (ezemplifying) descriptions given in a
number of different formal languages.

This semantics can be formally characterised as fol-
lows: a model for the logic Co is a structure, (U, P, d),
where U is a non-empty set, P is a denumerably in-
finite set of propositional constants, and d is a deno-
tation function which assigns to each constant in P
a subset of Y. The domain of d is extended to all
Co formulae formed from the propositional constants
by stipulating that:

1. d(=P) = d(P)
2. d(P A Q) =d(P)Nd(Q)
3. d(P Vv Q) =d(P)Ud(Q)

where for any set S, S is the set of all elements of &
which are not elements of S.

Intuitively, tautologous formulae ought to be true in
any possible world; and indeed it can be shown that
F is a theorem of Cy if and only if d(F) = U in all
models.

This interpretation induces a simple correspondence
between propositional formulae and set-terms — i.e.
terms comprised of set-constants combined with the
operations: union, intersection and complement. I
use the notation ¢/=57 to refer to the mapping be-
tween propositional formulae and set-terms; thus we
can write e.g. (P V =Q) ¢=5T (PUQ).

I now introduce some further notation in order to state
the theorem which provides the foundation for my rea-
soning system.

e A universal set-equation is an expression of the
form ¢ = U which asserts that the set-term ¢
denotes the set of all elements in the universe..

e P,...,P, Eco P, means that in the calculus,
Co, the formula P, is entailed by the set of formu-
lae, {Py,..., Pa}. (Thus |Ec, P means that P is
a theorem of Cy .)

e E\,...,.E, Es Eo, where Ey,...,E, are set-
equation, means that in any model for which
the equations Ej,..., E; hold, the equation Ej
also holds. (s E means that E holds in every
model.)

It can then be shown that:

Theorem 1 Py,...,P, Eco Po
ifandonly if m =U,...,mn=U s mo=U,
where P; c=5T n; for each i.

I first establish that:

Lemmal If [Eco t=U, where

Pcov——‘ST t.

P then ks

Proof: If P is a tautology then if it is converted
to conjunctive normal form (CNF) each conjunct will
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Table 1: Definitions of Four Topological Relations in Cy

[_Relation | Description [

Set Equation [ Model Constraint |

DR(X,Y) | X and Y are discrete XNy =u (X AY)
P(X,Y) X is part of Y XuY=u XY
P=1(X,Y) | Y is part of X XuY=u Yo X
EQ(X,Y) | X and Y are equal (XuY)n(xXuY)=u XeY

contain a pair of complementary literals (L and -L).
Set-terms can also be converted to an analogous nor-
mal form, intersection normal form (INF): by means
of simple re-write rules any set-term can be expressed
as an intersection of unions of set-constants and their
complements.

If a set-term corresponds to a tautological proposition
then when expressed in INF each union in the expres-
sion must contain some pair, T and 7, of a set constant
and its complement. So whatever the assignment to
the set constants each union and hence the intersec-
tion of these unions will have the value /. This ensures
that lemma 1 must hold. O

I now return to the proof of theorem 1.

Proof: If Py,...,P. [Eco Po then the formula
(Py A ... A P,) = P, must be a tautology; hence, by
lemma 1, the equation t; N...N¢, Ute= U must hold.
But in any model satisfying t; = U,...,t, = U one
must have {; N...N¢, = @. Therefore to = U.

On the other hand suppose Py,...,P, Fco Po; this
means that there is some truth-functional assignment,
f, under which P,,..., P, are all true whilst P is
false. Given such an assignment we construct a set
assignment, s, such that s(P)= U if f(P) =true and
s(P) = 0 if f(P) =false. Clearly, the values of com-
plex set-terms under s will correspond directly with
the truth values of the associated propositions under f.
Hence s is an assignment such that ¢, = U,...,t, =U
andto=0.Soty =U,...,.th,=U %5 to=U.0O

This correspondence theorem allows us to use classical
propositional formulae to reason about universal set-
equations.

2.1 FROM POSSIBLE WORLDS TO
SPATIAL CONSTRAINTS

The basis of the topological representation system pre-
sented below is to exploit this semantics of proposi-
tional logic in terms of sets; but rather than taking &/
to be a set of possible worlds, & will be interpreted as
a space of points and propositional letters will thus be
interpreted as referring to regions within that space.

A universal set-equation can be regarded as a con-
straint on possible models — i.e. possible assignments

of subsets of U to set-constants. If the set-constants
denote regions, this allows one to specify relationships
between these regions. For example the constraint
AU B= U will be satisfied by all and only those mod-
els in which set A is a subset of set B — i.e. region
A is part of region B. In terms of Cp this constraint
could be represented by the formula—A Vv B (or equiv-
alently A — B). Thus, if £,,. refers to the language
whose expressions are all universal set-equations, a set
of these equations can form the © component of a
situation-description, (Ly,e, T, ©).

3 DEFINING TOPOLOGICAL
RELATIONS

The basic method is as follows: certain constraints as-
sociated with topological relationships are represented
by propositional formulae; further constraints are then
added at the meta-level in terms of restrictions on en-
tailments of these formulae. A topological relation
is thus defined by a set of formula called model con-
straints together with a further set of formulae called
entailment constraints. A situation involving a num-
ber of topological relations is possible if and only if the
set of model-constraints associated with all of the rela-
tions does not entail any of the entailment constraint
formulae.

3.1 MODEL CONSTRAINTS

Suppose we have a situation in which a region A is
part of another region B. Then the union of B with
the complement of A must fill the entire space, U .
This can be represented by the set equation AUB=U .
Hence because of the correspondence with Cp we can
represent this as -4 V B (or equivalently A — B).
This formula is the model constraint associated with
the situation A is part of B since in any model A — B
denotes U if and only if A is part of B.

By means of such formulae four topological relations
can be defined as shown in table 1. The relations de-
fined here strictly correspond to the RCC relations
of the same names only if we constrain all proposi-
tional letters to denote non-null regions. This rules
out pathological cases such as where X is part of Y
and X and Y are also discrete, which is only possi-
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ble if X is null. More will be said about null regions
below.

3.2 ENTAILMENT CONSTRAINTS

As it stands, our representation is very limited: many
simple spatial relations cannot be defined solely by
means of universal set-equations specifying model con-
straints. For example the relation PP(X,Y), X is
a proper part of Y cannot be so expressed. Never-
theless, informally this relation can be defined quite
straightforwardly as that relation which holds when-
ever P(X,Y) is true but not EQ(X,Y). So it would
seem that we can characterise the proper part rela-
tion if we can find a way to represent the absence of a
relation which we can already define.

We must now ask how the negations of C, model con-
straints should be represented. Take for example
-P(X,Y) (X is not part of Y). Suppose we simply
negate the model-constraint corresponding to P(X,Y);
we would then get =(X — Y'). But this formula corre-

sponds to the set equation X UY=U or equivalently
XNY=U; and this will only hold when X=« and
Y = 0. So we see that the negation of a model-
constraint formula does not correspond to the absence
of the relation enforced by that constraint.

In terms of sets, what we really wanted to represent
was X UY # U which is the direct negation of the
set equation for P(X,Y). But negating the formula in
the propositional representation does not give us this
because such a negation is interpreted as a complement
operation on the set-term rather than a negation of the
whole equation. This means that the absence of the
relations defined so far cannot be represented directly
as model-constraints.

We need to increase the expressive capabilities of our
representation language so we can represent situations
in which we specify not only that a number of universal
set-equations hold but also that certain such equations
do not hold. Thus, we employ the language L,,e; of
universal set-equations and inequalities. A situation-
description in this language is a structure (Ly,ei, X, ©)
where O is a set of universal set-equations and inequal-
ities which are negations of universal set-equations.
Such a situation description can be represented by a
pair (M, E) where M and & are sets of Co formulae
obtained respectively from the set-terms involved in
the set-equations and inequalities in © according to
c#~">". The language consisting of pairs of sets of
Co formulae will be called C7 .

3.3 CONSISTENCY OF C} SITUATION
DESCRIPTIONS

What we now need is a method of determining from a
pair of formula sets, (M, &), whether the correspond-
ing situation-description, (Ly,ei, £, ©), is possible.

Suppose © is aset {my = U,....mj = U, e #
U,...,ex # U} then O describes an impossible situ-
ation if and only if the following entailment holds:

=ut=s€1=uV. .Ve=U

The r.h.s. is a disjunction of set-equations and as such
cannot be translated into a union at the level of set-
terms (just as negating a set equation is not equivalent
to applying the complement operation to its set term).

m =ll,...,m,-

However, it can be established that in the domain of
sets, entailments of this kind are convez 3 in the sense
of [9]. A class of entailments is convex iff whenever
F'E¢1V...V¢,thenT | ¢;, forsomeiinl...n

Consider the entailment associated with the impos-
sibility of ©. Suppose none of the disjuncts on the
r.h.s. are entailed by the equations on the l.h.s.. This
means that for each disjunct e;= U there is a model,
(Ui, P, d;) in which it is false whilst all the 1.h.s. equa-
tions are true. We can assume that the universes for
each of these models are disjoint. We now construct
a new model, (U.,P,d.), such that &, = |J;« and
d.(X) = U; d i(X). The U;’s thus form discrete sub-
spaces of U,. A consideration of this new model will
reveal that it provides a counter-example to the en-
tailment, since it must satisfy all the 1.h.s. equations
whilst making each of the disjuncts on the r.h.s. false.

Thus the r.h.s. will be entailed if and only if at least
one of the disjuncts is individually entailed. So for
each e; we need to check whether

=UEsei=U

Thus, because of the equivalence between f=5 and en-
tailment between corresponding Co formulae given by
Theorem 1, we have the following:

my=U,...,mj

Theorem 2 A C{ representation (M, E) corresponds
to a possible situation description (specified in Ly,ei)
if and only if there is no formula F € £ such that

M t=CoF

This theorem should make clear why the formulae in
the set £ are called entailment constraints.

3.4 THE RCC RELATIONS DEFINED

We can now give CF representations for a significant
sub-class of the RCC relations. Let us first look at
how the situation type “A is a proper part of B” is
represented. We can say that PP(4, B) holds when A
is part of B but the two regions are not equal. This
gives us the equality AU B = U and the inequality
(AUB)N(AUB) # U. Also as noted above, to rule
out cases where either A or B is the null set, we also
need A # U and B # U. Equalities are encoded as

3Note that later in the paper I use the term convez with
its ordinary sense, as a property of the surface of a region.
Hopefully this will not cause too much confusion.
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Table 2: A Five Relation Basis Defined in CF

[_Relation | Model Constraint ___Entailment Constraints ]
DR(X,Y; (X AY) T =X, Y
PO(X,Y — X VAY, X2Y,Y 9 X,-X,-Y
PP(X,Y) XY Y 2 X,-X,-Y
PP~}(X,Y) Yo X X-=Y,-X, Y
EQ(X,Y) XeY -X, Y

model-constraints and inequalities as entailment con-
straints so our propositional representation for the re-
lation PP(A, B) is the pair

({A - B},{A & B,-A,-B}).

The Cg representation allows us to define five jointly
exhaustive and pairwise disjoint topological relations
from the RCC lattice of spatial relations. The defini-
tions are shown in table 2.

The model constraint associated with a relation is the
strongest formula which holds in all models in which
the relation holds. The entailment constraints serve
to exclude cases which, although consistent with the
model constraint are incompatible with the relation.
Thus the entailment constraints correspond to model
constraints of other relations (plus the non-null con-
straints). The relation PO has no model constraint
and is defined by excluding all of the other relations.

Certain entailment constraints which one might expect
to be required can be eliminated or weakened because
they are indirectly captured by other constraints. For
example, in table 2 the entailment constraint A & B,
which occurred in the representation of PP worked
out above, is replaced by the weaker formula B — A,
since in the presence of the model constraint A — B,
B — A would immediately entail A & B.

4 REASONING WITH Cf

By making use of the results obtained so far one can
use a Cp theorem prover as the basis of an effective
automated spatial reasoning system. For clarity I con-
cisely summarise the consistency checking algorithm
for C}. Given a situation description consisting of a
set of relations of the form R(a, 3), where R is one of
the relations characterisable in C§, and a and 8 are
constants denoting regions, the following simple algo-
rithm will decide whether the description describes a
possible situation:

e For each relation R;(a;, ) in the situation de-
scription find the corresponding propositional rep-
resentation (M;, &;).

e Construct  the

(Ui Mi, U &)

overall  Cf representation

o For each formula F € |J; &; use a classical propo-
sitional theorem prover to determine whether the
entailment | J; M; ¢, F holds.

o If any of the entailments determined in the last
step does hold then the situation is impossible.

For example we may want to know whether the fol-
lowing situation is possible: A, is a proper part of B;
B is disjoint with C; and, A is a proper part of C.
The C} representations of the three spatial relations
are respectively:

é{A — B},{B = A,~A,~B}),
{~(B A C)},{-B,-C}),
({A = C}1,{C = A,~A,~C}).

So the overall CF representation is

({A—=B,~(BAC),A— C},
{B = A,C = A,-A,-B,~C}).

We determine that this situation is impossible since
A= B, ~(BAC), A= C [Eco-A.

4.1 DETERMINING ENTAILMENTS

Computing inconsistency of situations is a special case
of determining entailments between situation descrip-
tions characterisable in Cf . To refer to such an entail-
ment, I shall use the notation (M, £) =g+ (M',E).
We can express the meaning of this as an entailment
between set-equations corresponding to the formulae
in the C§ representation:

m=UAN...Amp=UNer #U N ... Ne;#U
Es
mi=UNA...Ami=U Ny £U N ... Nej, £U

If we then bring the r.h.s. over to the left and move
the resulting negation inwards we get:

m=UNAN...Amp=UNer# U N ... Ne;#£U A
(my#ZUNV..Vm;£U Ve=UV...Ve=U)Fs

To show the validity of this we must show that
whichever of the equations in the disjunction is cho-
sen the resulting equation set is inconsistent. This is
equivalent to showing that:

for all p € M’ we have (M, £ U {p}) ¢+
and for all g € £’ we have (MU {¢},€) ¢+
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Table 3: Composition table for the 5 relation basis

R(b, <)
R(a,b) DR PO EQ PP PPt
DR — DRVPOVPP | DR | DRV POV PP ~ DR
PO DRV POV PP~* * PO PO v PP DRV PO v PP~T
EQ DR PO EQ PP PP-!
PP DR DRVPOVPP | PP PP x
PP-T_ |[DRVPOVPPI| POVPP' | PP 0 PP~

Another equivalent way of expressing these which is
more convenient from the point of view of actually
calculating the entailments is the following:

Theorem 3 (M,£) ¢+ (M',E') iff
either (M, €) =+
or (forallpe M': (M,{p})Ecs

and forallg€e & : (MU {q},€) l=0;" )

Determining the validity of a C5 entailment has thus
been reduced to determining the impossibility of cer-
tain situation descriptions derived from the constraints
involved; and we already know that a description is im-
possible iff one of its entailment constraints is entailed
by its model constraints.

4.2 COMPUTING LOCI OF
COMPOSITION

Given a particular theory © supporting a set B of
mutually exhaustive and pairwise disjoint dyadic re-
lations (a basis set), for each pair of relations R, and
R, taken from B, the locus of composition * of R; and
R, Comp(Ry, R2), is the disjunction of all relations R3
in B, such that, for arbitrary individual constants a,
b, c, the formula R;(a,b) A Rz(b,c) A R3(a,c) is con-
sistent with ©. In other words Comp(R,, R;) is the
disjunction of all possible base relations which could
hold between a and ¢. Computing loci of composition
for spatial relations is the “challenge for automated
theorem provers” proposed in [12].

By using the consistency algorithm described above,
the Cg representation enables loci of composition
for spatial relations to be computed very efficiently.

‘What is here called the locus of composition is the
same as what in [12] was referred to as the ‘transitive
closure’ of two base relations. This terminology derives
from Allen’s ‘tramsitivity table’ for temporal intervals [1].
However,‘transitive closure’ already has a meaning differ-
ent from what is intended here, so a new term is required
to avoid potential confusion. In describing the more gen-
eral problem of determining possible values of unknown
relations in the context of a partial situation description 1
have adopted the phrase ‘locus of an unspecified relation’.
The ‘locus of composition’ is a special case of such a locus.

Given R; and R, which are members of some ba-
sis set B, one simply checks for all values of Rg
taken from B, whether the situation described by
Ry(a,b), Ra(b,c), Ra(a,c) is possible. Table 3 gives
the loci of comPosition for the 5 relation basis
{DR,PO,PP,PP~",EQ}. The symbol ‘*+’ stands for
the disjunction of all 5 relations. This table was com-
puted in under 6.7 seconds on a SPARC1 workstation.

5 MORE EXPRESSIVENESS WITH
INTUITIONISTIC LOGIC

In his paper “Sentential Calculus and Topology” [13]
Tarski has shown that the intuitionist propositional
calculus (henceforth Z, ) can be given an interpreta-
tion in which propositional letters correspond to open
sets within a topological space.

The spatial interpretation of intuitionistic logic re-
quires a richer notion of a space than the classical.
Specifically, whereas before a space was simply a set
of elements, a space is now a set of elements for which
the notions of interior and closure are defined for each
subset of spatial elements.

A topological space can be described by a structure
(U,i), where U is an arbitrary set of elements whose
topology is defined by a function i which maps each
subset of U to another subset of U, its interior. i must
satisfy certain well known axioms (see e.g. [6, p.129]).
The closure of a set ¢(X) is defined as equivalent to

i(X).

5.1 INTERPRETATION OF I,

The topological interpretation of Zy is very similar to
the interpretation of Cy given above. Again proposi-
tional formulae will denote subsets of a space, although
admissible subsets will be limited to those which are
open under the topology of the space. A set X is open
if and only if i(X) = X.

A model for I is a structure (U, ,P,d), where U is a
non-empty set, i is a function satisfying the appropri-
ate axioms, which maps subsets of U/ to their interiors,
P is a denumerably infinite set of propositional con-
stants, and d is a denotation function which assigns to



each constant in P an open subset of 4. The domain
of d is extended to all Zp formulae formed from these
variables by stipulating that:

1. d(~P)=i(d(P))*

2. d(P AQ)=d(P)Nd(Q)

3. d(PVvQ)=d(P)udQ)

4. d(P=Q) = i(d(P)ud(Q)

where for any set S, S is the set of all elements of &
which are not elements of S.

Just as for the classical logic we can consider the topo-
logical interpretation of Z, as associating each intu-
itionistic formula with a set-term; but set-terms may
now contain the interior operator. I refer to the map-
ping between Z, formulae and set-terms induced by
this interpretation with the notation ;=57.

Tarski’s “Second Principal Theorem” [13, p.448] es-
tablishes that a propositional formula is a theorem of
Iy if and only if the corresponding set-term has the
value U in any topological space under any assignment
of open sets to the set constants occurring in the term.
The proof of this is fairly involved and is not recon-
structed. I use the notation ‘tp,’ to denote entailment
in Zp and ‘=7’ to denote topological entailment — i.e.
entailment between set-equations which may contain
the interior operator, i. Tarski’s theorem can then be
written formally as:

Theorem 4 1, P ifandonlyif Er n=U,
where P ;=5T . 6

In using Zp to represent spatial relations we shall ex-
ploit very similar correspondence relations to those
holding between the Co and the Boolean algebra of
sets. In order to secure the correspondence between
entailment in Zp and entailment between set equations
in the topological algebra of sets, we need to gener-
alise Tarski’s result to a correspondence between en-
tailments:

Theorem 5 P,,...,P, k1, Po
ifandonly if m=U,...,7p=U |ET "= U

Proof: The positive half is simple:

An I, entailment Py,...,P, tp, P holds iff Fy,
(PLA ... AP,) = Py, so by Theorem 4 we have

SUnder this interpretation one can see why the law of
excluded middle fails_in intuitionistic logic. AV ~A is
interpreted as AU i( A ). But the union of A with its ex-
terior, i( A ), does not exhaust the space, since the points
in ¢(A) — A, the boundary of A, are neither included in A
nor its exterior.

SThis theorem holds for any topology whatsoever.
Adding conditions to the topology would mean the cor-
responding logic would be stronger. The limiting case is
the discrete topology corresponding to classical logic.
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Er i(mN...Nr,Um)=U. But if a set has U as
its interior then it must be equal to U/, so the equa-
tion (m N ...Nm,Um)=U must hold in every model.
Thus whenever m;= U fori = 1...n we must also have
mo=U—inotherwords mi=U,...,my=U [T 7o =
u.

Suppose on the other hand Py,..., P, /1, Po. Theo-
rem 4 gives us [Er i(m N ...N 7, Umg) = U, which

means that there is some model, M = (U,i,P,d), in
which there is at least one element of m; N ... N 7,
which is not an element of my. On the basis of this
model we now construct a model M’ = (U',¢,P,d')
whose universe, /' is the set denoted by my N...N 7,
in M. We set #(X) = i(X) for all X C U’ and for
all propositional constants P; we set d'(P;) = d(P;) N
U'. The interpretations of the logical operators given
above will ensure that for all formulae F, d'(F) =
d(F)nu'.

Thus in particular foreach i = 1...n,d'(P;) = d(P;)N
U =n;nU' =U';i.e. in the new model all antecedent
formulae denote the universe. We also have d'(Pp) =
d(Po)NU' = moNU'. Furthermore, we know that there
is at least one element of &’ which is not an element
of mp. This means that d’(P;) # U’; so M’ provides
a counter-example to the entailment. This concludes
the proof of theorem 5. O

5.2 Z, REPRESENTATION OF RCC
RELATIONS

We can now translate the topological relations defined
by 1st-order logic in the RCC system into a 0-order
representation in which intuitionistic formulae repre-
sent constraints on possible situations.

The basis of the interpretation is as follows:

o A region is identified with an open set of points.
(So regions are denoted by propositional letters in
the Z, representation.)

o Regions overlap if they share at least one point.

o Regions are connected if their closures share at
least one point.

This interpretation is in accord with that suggested for
the RCC theory in [10].

Because the topological interpretation of Zy involves
set-terms containing the interior operator, i, it allows
us to make some distinctions which are not possible
with the classical calculus. In particular we can now
distinguish the case where two non-overlapping regions
are connected (i.e. touch at one or more points) from
that in which they are totally disconnected. And, in
a similar manner, we can specify whether a region
which is a proper part of another is a tangential or
non-tangential proper part.
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Table 4: Some RCC Relations Defined in Z3 (including the 8 relation basis)

Relation Model Constraint Entailment Constraints
DC(X,Y) ~XVv~Y ~X, ~Y
EC(X,Y) ~(X AY) ~XV~Y,~X, ~Y
PO(X,Y) — ~(XAY), X=2Y,Y=3X,~X,~Y
TPP(X,Y) X=Y ~XVY, Y=2X,~X,~Y
TPP~1(X,Y) Y=X ~YVX, X2Y,~X,~Y
NTPP(X,Y) ~XVvY Y= X,~X,~Y
NTPP~!(X,Y) ~YVX X=3Y,~X,~Y
EQ(X,Y) X&Y ~X,~Y

C(X,Y) — ~XV ~Y,~X,~Y
EQ(X,sum(Y,Z)) | X& (Y V 2) ~X,~Y ~2

If two regions share no points they cannot overlap (al-
though they may be connected). In such a case the
equation i{( X NY )= U must hold; this can be repre-
sented by the Zp formula ~(X A Y). In Z (unlike Co)
this formula is not equivalent to ~X V ~Y. The lat-
ter corresponds to the set-equation i( X )Ui( Y )=U,
which says that the union of the exteriors of two re-
gions exhaust the space. If the regions touch at one
or more points, then these points of contact will not
be in the exterior of either region so this equation will
not hold. Hence the second (stronger) formula can be
employed as a model constraint to describe situations
where two regions are completely disconnected.

5.3 THE I} REPRESENTATION
LANGUAGE

To represent relations using Zp we can use essentially
the same type of encoding as we employed for Cy. As
before, restrictions on possible models corresponding
to the presence of topological relationships between re-
gions are enforced by means of model constraints and
entailment constraints. The role of these two types
of constraint in reasoning about situations is exactly
as in the classical case. In fact the arguments given
in sections 3.2, 3.3 and 4.1 regarding the representa-
tion of negative constraints and the correct procedures
for reasoning in C§ apply equally when Z, is employed
as a language for representing set equations. Most of
the arguments rely only upon the correspondence ex-
pressed in theorem 1, so parallel arguments for Zp can
be given on the basis of theorem 5. The convexity
property shown in section 3.3 can also be similarly
demonstrated for the topological interpretation of Zj.
Hence we already have the apparatus for reasoning
with the language Z; , whose expressions are pairs of
sets of Zy formulae specifying model-constraints and
entailment-constraints. Counterparts of theorems 2
and 3 apply to the language Z7 as well as to C .

Table 4 gives the I3 representation of each of the 8
basic relations shown in figure 1. The definition of C

plus another example using the RCC function sum are
also given. That the model constraints given in this ta-
ble must hold if the corresponding RCC relation holds
is easily verified by considering the interpretation of
the formulae given in section 5.1. As with C7, the
set of entailment constraints represent negative condi-
tions needed to exclude unwanted situations which are
compatible with the model-constraint.

6 IMPLEMENTATION OF A
I REASONING SYSTEM

A spatial reasoner using this technique has been imple-
mented in Prolog using a Horn clause representation
of a restricted Gentzen calculus for Zy and a look-up
table to translate topological relations into the appro-
priate model and entailment constraints. Running on
a SPARC1 workstation the program generated the full
composition table for the 8 base relations shown in
Figure 1 in under 244 seconds.

This is a substantial improvement over the method
described in [12]. In generating the table given there,
the theorem prover OTTER [7] was used, working with
the 1st-order axiomatisation of the RCC theory. OT-
TER took a total of 2460 seconds to prove the required
theorems but some proofs required human assistance
(addition of hand chosen lemmas and restriction of
the set of axioms used). Furthermore this method in-
volves not only theorem proving but also model build-
ing in order to ensure the minimality of table entries
(see [12]) and this is also computationally intensive.
This method cannot really compete with reasoning us-
ing the ZJ representation, since unlike Z no decision
procedure is known for the 1st-order RCC theory.

6.1 THEOREM PROVING IN I,

Clearly, to use I3 as a representation language for ef-
fective spatial reasoning we need to be able to reason
efficiently in Zo. Theorem proving in Z, is decidable
but potentially very hard (see [5]). A proof-theory



for the language can be specified in terms of a sim-
ple cut-free Gentzen sequent calculus which is only a
slight modification of the corresponding classical sys-
tem. The formalisation I use is essentially the same as
that given in [4].

Theorem proving in the Z, sequent calculus is more
complex than that of Cy: in Cp all connectives can be
eliminated deterministically because the rules produce
Boolean combinations of sequents which are logically
equivalent to the original sequent. However with cer-
tain rules in the Z; calculus the resulting combination
of proofs is not necessarily provable even if the original
sequent is valid. In other words the rule gives a suf-
ficient but not necessary condition for validity. Con-
sequently theorem proving in Zp is non-deterministic
and involves a much larger search space.

However, given that the representation of many spa-
tial constraints involves only a very limited class of
Z, formulae, much of the potential complexity of the-
orem proving can be avoided. This is achieved by em-
ploying a proof system which, although not complete
for the full language of Zy, is complete for sequents
containing only formulae used to represent the RCC
spatial relations. Specifically, we need handle formulae
of the following forms: ~ X, ~X V ~Y, ~(X AY),
X=2Y,~XVY.

Given this restriction, the non-deterministic and ex-
tremely computationally expensive rule for eliminating
implications from the left hand side of a sequent can
be replaced by other rules which can be applied deter-
ministically (space does not permit a fuller explana-
tion). Use of this restricted proof system dramatically
increases the effectiveness of reasoning in Z .

7 EXTENDING THE
REPRESENTATION

In the rest of the paper I indicate how the
I representation can be extended to incorporate ex-
tra concepts which are not directly reducible to Z3 but
for which we do have a set of axioms specified in the
(more expressive) lst-order classical logic, ;. To il-
lustrate the method I show how the notions of ‘inside’
and ‘outside’ can be represented.

7.1 ‘INSIDE’ AND ‘OUTSIDE’

Following the approach taken in [10] I define the re-
lations ‘inside’ and ‘outside’ in terms of a convez-hull
operator which is introduced as a new primitive. The
convex-hull, conv(X), of a region X can be informally
defined as that region which would be enclosed by a
taught rubber membrane stretched around X. 7 In

"More formally, in terms of point sets, conv(X) is
the closure of X with respect to the relation of between-
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terms of the relations P(z,y) (z is a part of y) and
TP(z,y) (z is a tangential part of y) and C(z,y) (z
is connected to y) an axiomatisation of conv(z), the
convex-hull operator can be given in C; as follows:

1. VzTP(z,conv(z))

2. Vz[conv(conv(z)) = conv(z)]

3. VzVy[P(z,y) — P(conv(z),conv(y))]
4. Vz¥y[conv(z) = conv(y) — C(z,y)] ®

Whether these axioms are indeed faithful in charac-
terising the convex-hull is not completely certain. The
first three are very simple and undoubtably true. 4)
is more difficult to see. It states that, if two (finite)
regions have the same convex-hull they must be con-
nected.

To show this I introduce the notion of the convez-hull
defining points of a (finite) region. These are points in
the closure of a region which do not lie between any
two other points in its closure. Such points will always
lie on the surface of a region (i.e. ¢(X) — X) and will
always be points where the surface is convex.

The convex-hull defining points of a region uniquely
determine its convex-hull. Also every convex-hull has
a unique set of defining points. Consequently, two re-
gions have the same convex-hull if and only if they have
the same defining points. We may also note that an n
dimensional region must have at least n + 1 defining
points. From these observations it is clear that if two
regions have the same convex-hull then their closures
must share certain points; they must have at least the
convex-hull defining points in common. This being so,
regions with the same convex-hull must be connected.

So there are compelling arguments for the truth of
all the axioms given above. What is less certain is
whether this axiom set is complete: it is possible that
there are properties (expressible in terms of C and
conv) of the convex-hull in Euclidean space that are
not captured. If this were the case then there would
be situation descriptions consistent with the axioms
but impossible under the intended interpretation of
the conv operator®.

7.2 RELATIONS DEFINABLE WITH conv

A large number of new binary relations can be defined
in terms of the conv together with other RCC relations.

ness, that is conv(X) = {z : 3yIz[y € X A z €
X A B(y,z,z)]}, where B(z,y, z) means that point y lies
on the straight line between z and z.

8 Actually this is not necessarily true for infinite regions.

?One way to demonstrate adequacy of the axioms would
be to show that they are faithful to the interpretation in
terms of the betweenness relation, which has a straightfor-
ward algebraic definition in a model which is a Cartesian
space over the real numbers (see [14]).
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For example [10] gives the following definitions:

o INSIDE(X,Y) =4ey DR(X,Y) A P(X,conv(Y))
) P-|NS|DE(X, Y) =def

DR(X,Y) A PO(X,conv(Y))
e OUTSIDE(X,Y) =4.y DR(X,conv(Y)) 1©

More generally by combining the 8 basic RCC relation
with the conv operator we can specify a total of 8*
relations of the form R;(X,Y) A Ra(X,conv(Y)) A
R3(conv(X),Y) A Ry(conv(X), conu(Y)).

To keep the number of relations dealt with manage-
able, I identify a set of 18 mutually exclusive re-
lations which are refinements of the DR. Follow-
ing [10] I represent these by expressions of the form
[o1,02,7](X,Y), where o, is either ‘I, ‘P’ or ‘O’ ac-
cording as either INSIDE(X,Y), P-INSIDE(X,Y) or
OUTSIDE(X,Y); o2 refers to the corresponding in-
verse relation (i.e. one of these 3 relations but
with the arguments reversed); and 7 is either ‘D’ or
‘E’ according to whether the regions are completely
disconnected or externally connected. Thus, for
example, [P,LE](X,Y) means that P-INSIDE(X,Y),
INSIDE(Y, X) and EC(X,Y).

Actually the relation [I,I,D](X,Y) is impossible, since
if two regions are both inside each other they must
share the same convex-hull and therefore, according
to axiom 4., must be connected. Thus we can identify
a basis of 23 pairwise disjoint and mutually exhaus-
tive relations consisting of the 17 possible refinements
of DR, plus the six remaining relations of the RCC 8
relation basis.

7.3 ENCODING conv IN 7}

Suppose we treat the expression conv(Y') simply as re-
ferring to an arbitrary region. Then the relation IN-
SIDE(X,Y) as defined above could be represented by
two model constraints: ~(X A Y) and X => conv(Y),
corresponding to DR(X,Y), and P(X,conv(Y)), re-
spectively. So we can assimilate references to convex-
hulls into the Zg representation simply by introduc-
ing propositional expressions of the form conv(.X) into
I, formulae. But, as regards correct reasoning, this is
inadequate, since the meaning of conv(X) relative to
X is not fixed — they are just two regions.

This can be remedied by adding extra constraints to
I situation representations which enforce the axioms
given above. This extra information means that situ-
ations which are inconsistent in virtue of these axioms
can be detected by means of a Zy theorem prover. In
so far as the axioms adequately characterise the in-
tended interpretation of conv this will serve to fix the
meaning of the operator.

1Note that these relations are not purely topological,
since they are not preserved by rubber deformations of the
regions involved.

Axiom 1. can be enforced as follows: for each re-
gion X mentioned in the initial situation description,
augment the description with extra model and en-
tailment constraints corresponding to the situation
TP(X,conv(X)). Any model which satisfies this ex-
tended model will clearly satisfy axiom 1.

Axiom 2. is taken into account implicitly. In enforcing
axiom 1. we introduce extra regions into the situation
description corresponding to the convex-hulls of each
region in the initial description. Axiom 2. tells us that
these are the only additional regions we need consider,
since iterating the conv functions does not produce any
more new regions.

Treatment of axioms 3. and 4. is encompassed by a gen-
eral procedure which enables enforcement of all axioms
of the form:

Vzy,...,2,[®(21,...,2n) = ¥(21,...,2n)],
where ®(z,,...,2,) and ¥(zy,...,z,) specify situa-
tions which can be described by means of Z; .

To test whether a given Z7 situation description satis-
fies such an axiom an iterative fixed-point method can
be used:

e Test the Z§ description for consistency

o Check whether some instance of the antecedent
is entailed by an the initial description. This in-
volves translating &(...) into Z3 and substituting
all combinations of constants occurring in the de-
scription for the free variables.

o If any such &(...) is entailed add the correspond-
ing Z§ representation of ¥(...), under the same
substitution, to the situation description.

o Repeat until either the situation description be-
comes inconsistent or no new information is added
by the previous step.

This process must terminate; and if the final situa-
tion description is still consistent then clearly the ax-
iom is satisfiable, since for all substitutions either the
antecedent is not entailed by the description or the
consequent has been explicitly added.

Clearly the convex-hull axioms 3. and 4. are of the
form which can be captured in this manner. In fact,
since their antecedents are quite simple, they can be
enforced quite efficiently.

74 AN AUTOMATICALLY GENERATED
23 RELATION COMPOSITION TABLE

Table 5 gives the full composition table (i.e. table
of loci of composition) for the basis of 23 relations
described in section 7.2. If Ri(4, B) and Ry(B,C),
where R; is the relation specified in the left hand col-
umn and R is specified along the top, the correspond-
ing table entry encodes the possible values of the rela-
tion Rs(A, C). Each of the 23 relations is represented
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by one of the two symbols ‘x’ and ‘o’ at a certain posi-
tion in a 3 x4 matrix. These representations are shown
in the second column. Table entries are constructed
by superimposing the representations for each of the
possible relations. Where ‘x’ and ‘o’ should both be
present in the same position, the symbol ‘e’ is used.

The table was generated using meta-level enforce-
ment of the conv axioms in a Prolog implemented
I reasoning program. It was produced in 3h 31mins
on a SPARC10 workstation. Such a table has hith-
erto never been computed by a proof oriented method.
[3] contains a similar table constructed using a model
building approach but it has subsequently been found
that the table given there is too strict in that it rules
out certain configurations, which are in fact possible
for 3D spatial regions. My table has not been found
to contain any false entries.

8 CONCLUSIONS

I have shown how a significant family of spatial re-
lations can be represented in a logical representation
which is decidable. The computational effectiveness of
this representation has been demonstrated by gener-
ating tables of loci of composition for a number of sets
of spatial relations.

The divergence between expressiveness and tractabil-
ity of logical languages is perhaps the greatest obstacle
to the development of Al systems. I believe that this
problem can be mitigated to some extent by ensuring
that the expressive power of a representation does not
exceed what is really needed. In particular, much of
the power of 1st-order logic is unnecessary for reason-
ing in many domains. Hence, it is likely that encod-
ing information in a (non-classical) propositional logic
rather than lst-order calculus may provide a mecha-
nism for effective reasoning in other areas of knowledge
representation.

There are many ways in which the system presented
here could be enhanced. The efficiency of the system
could be improved by optimising its theorem proving
performance. Also expressivity could be increased by
developing a more general framework for meta-level
enforcement of 1st-order axioms.

I am currently exploring the possibility of using the
modal logic S4 for spatial reasoning. This may well
prove to be better suited to the task than Z,.
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Abstract

The notion of a default consequence relation
is introduced as a generalization of both de-
fault and modal formalizations of nonmono-
tonic reasoning. It is used to study a general
problem of correspondence between these two
formalisms. As is shown, in many cases each
of them can be translated into the other.

1 INTRODUCTION

In this paper we will attempt a systematic study of
the relation between default and modal formalizations
of nonmonotonic reasoning. To this end, we consider
first the reformulation of both default logic and modal
nonmonotonic logics as proof systems involving rules,
or sequents, with the form

a:blk A,

where a and b are finite sets of propositions. The in-
formal interpretation of such sequents will be, “If all
propositions from a are assumed (or believed) to hold
and no proposition from b is assumed to hold, then
infer A.” Sets of default sequents satisfying certain
conditions will be called default consequence relations.
Such consequence relations can in fact be considered as
a generalization of Reiter’s default logic. The main dis-
tinctive feature of our formalization is an explicit use
of ‘meta-rules’ allowing to infer new default sequents
from given ones. It turns out that for extensions and
other ‘preferred’ objects relevant to our study there
are important structural rules that preserve these ob-
Jjects, and hence such rules can be safely added to any
consequence relation. Though we do not reach com-
pleteness in this way, there are reasons to believe that
certain sets of such rules provide a primary character-
ization of ‘logical paradigms’ behind different kinds of
nonmonotonic reasoning.

As the next step, we introduce the notion of a modal
default consequence relation. These relations will be

defined in a language with a modal operator, but oth-
erwise will involve the same rules as default conse-
quence relations. Modal default consequence relations
turn out to be an especially suitable tool for studying
modal nonmonotonic reasoning. Thus, both autoepis-
temic reasoning ([14]) and reasoning with ‘negative’
introspection ([9,11,13]) acquire a natural characteri-
zation in this framework.

As we show in [1], under certain reasonable conditions
modal consequence relations can be reduced to the as-
sociated nonmodal default consequence relations in a
way that in some well-defined sense preserves the ba-
sic nonmonotonic objects. These results will be used
here in order to establish a two-way correspondence
between modal and default formalizations. Thus, for
a number of modal nonmonotonic logics that appear
in the literature, we will give a representation in terms
of modal default consequence relations. We will show
also how and under what conditions objective default
consequence relations can be faithfully embedded into
modal ones. These latter results provide a natural
generalization of Truszczyiiski’s results (see [19,20])
concerning modal translation of defaults. Finally, we
will demonstrate that the modal logic K45, associated
with autoepistemic reasoning, is in some strong sense
equivalent to a certain nonmodal default consequence
relation.

Due to space limitations, proofs of all the new results
presented here will appear elsewhere.

2 DEFAULT CONSEQUENCE
RELATIONS

In this section, we will introduce the notion of a de-
fault consequence relation. It will be defined as a set
of default sequents of the above form satisfying certain
rules that allow to infer new sequents from given ones.
In fact, it is these rules that make a set of defaults
a proof system. Defaults as such do not bear infor-
mation about when and how they can be applied on
their heads. For ordinary inference rules, this informa-
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tion can be embodied in the form of ‘meta-rules’ that
produce new inference rules from given ones (this is ac-
tually the main idea behind various sequent calculi).
Default consequence relations is an attempt to extend
this idea on (nonmonotonic) inference rules that in-
volve as their premises not only what is assumed to
hold, but also what is assumed not to hold.

We will presuppose that default consequence relations
are defined in a propositional language with a prede-
fined notion of a logical (deductive) consequence. In
this paper we will assume that it is an ordinary classi-
cal consequence. The corresponding deductive conse-
quence operator will be denoted, as usual, by Th.

Definition 2.1 A set of default sequents with the
form a : b I+ A, where a,b are finite sets of propo-
sitions and A a proposition, will be called a default
consequence relation if it satisfies the following two
rules

(Monotonicity) Ifa:blF AandaCa',bC ¥, then
a:bIF A

(Deductive Closure) If A € Th(c) and a : b IF C;,
for any C; € c, then a : b I A.

Default consequence relations can indeed be consid-
ered as relations, that is relations between pairs of
premise sets, on the one hand, and propositions in
conclusions, on the other. Propositions from the first
premise set will be called positive premises, while those
from the second premise set—negative premises. The
rules (Monotonicity) and (Deductive Closure) provide
a primary constraint on our understanding of default
sequents. (Monotonicity) says, in effect, that default
sequents are applicable in all contexts in which their
premises hold. Note that this immediately distinguish
default rules from, e.g., preferential entailment that
restrict applicability of rules to ‘preferred’ contexts in
which the premises hold. (Deductive Closure) is less
controversial; it says that deductive consequences of
provable propositions are also provable.

Though default consequence relations were defined
only for finite sets of premises, the definition can be
easily extended to arbitrary sets of premises by stipu-
lating that for any possibly infinite sets of propositions
u and v,

u:vikA ifandonlyif a:biF A,

for some finite a,b such that a C u, b C v. This
stipulation also ensures that default consequence rela-
tions will satisfy the compactness property. Hence, in
treating infinite sets of premises, we will assume that
compactness holds.

The general notion of a default consequence relation
is rather uninformative. It is only a frame that can be
‘filled’ by additional rules that would provide a more
tight description of our intuitions about nonmonotonic

reasoning. As we will see, there is no single system
that reflects adequately all our intuitions. In fact,
different nonmonotonic constructions admit different,
even incompatible, reasoning paradigms. Below we
will consider a number of rules and conditions that
will form the basis for a subsequent classification of
various kinds of default reasoning.

To begin with, we introduce the following rule:

a:blFA a,A:bIF B

(Cut) a:bl+B

The rule (Cut) reflects a kind of cumulativity of de-
fault reasoning in the sense that it permits the use of
inferred propositions as additional positive premises in
the proof. As we will see, the rule allows to avoid ex-
plicit iterative constructions commonly used in defin-
ing nonmonotonic objects. Consequently, a default
consequence relation will be called sterative if it satis-
fies (Cut).

The following axiom states that no proposition can
serve as both a positive and negative premise in a
proof:

A:AlF L,

where L denotes the proposition “False”. The axiom
implies that consistent pairs of premise sets must be
disjoint. Though this requirement is not universally
acceptable (it does not hold, for example, in some se-
mantics for logic programming), it will hold for all sys-
tems we will consider in this paper.

(Consistency)

The following pair of rules reflect the requirement of
deductive closure for positive and negative premises,
respectively.
(Positive Closure)
A€Th(a) a,A:bI+B
a:bI+B

(Negative Closure) If B € Th(c) and a : b,C; I+ A,
for any C; € ¢, then a : b, BIF A.

(Positive Closure) implies that deductive consequences
of positive premises can be safely used as additional
positive premises, while (Negative Closure) says that
if we reject a proposition, we must reject at least one
proposition from any set of propositions that implies
it deductively.

One of the main consequences of the above rules is
the possibility of replacment of deductively equivalent
formulas both in positive and in negative premises.
Note that, in the classical case, (Negative Closure) can
be shlown to be equivalent to the following three simple
rules’:

(1) 0:-LIFL.

!Similar rules can also be given for (Positive Closure)
and (Deductive CLosure).
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(2) If B follows deductively from Aanda: b, AlF C,
thena:b,Bi-C.

3) a:b,AlFC a:b,BIFC
a:5,AABIFC

All the rules and conditions considered so far will hold
in all basic systems discussed in the paper. Now we
turn to considering rules that make a difference. The
first is the following Reflexivity axiom:

(Reflezivity) A:0IF A

Despite its apparent plausibility, the axiom does not
hold for some natural interpretations of default se-
quents (e.g., when the premises represent propositions
that are or are not believed, while conclusions are as-
sumed to be true). Still, there exists an instance of
the axiom that will be assumed to hold:

(Positive Consistency)
L:0IF L.

(Positive Consistency) implies, in particular, that con-
sistent pairs of premise sets must include consistent
sets of positive premises.
The second controversial rule is a rule that permits
‘reasoning by cases’(cf. [16]):
a,B:bltA a:5,BIFA

a:biFA )

(Factoring)

The rule implies, in effect, that contexts of reasoning
are complete (two-valued) with respect to positive and
negative assumptions. It turns out to be characteristic
of autoepistemic reasoning (see below).

Again, there is an important weaker form of ‘factoring’
that will hold for all systems considered in the paper.

(Negative Factoring)
a,B:bl- L a:5BIFA

a:blFA

The rule says that if it is inconsistent to assume a
proposition as a positive premise, then it can be as-
sumed as an additional negative premise. In fact, the
rule can be seen as a realization of the ‘negation as
inconsistency’ principle suggested in [5).

What will happen if we accept all the rules given
above? Before we answer this question, let us intro-
duce the following definition.

Definition 2.2 A default consequence relation will be
called stable if it satisfies (Cut), (Consistency), (Re-
flexivity) and (Factoring).

It can be shown that the above four rules imply both
(Positive Closure) and (Negative Closure). Hence, sta-
ble consequence relations satisfy all the above rules.

Unfortunately, the following theorem shows that stable
default consequence relations constitute a limit case—
they are already monotonic. To be more exact, they
are equivalent to (monotonic) Scott consequence rela-
tions. A binary relation a - b between sets of proposi-
tions is called a Scott consequence relation (see [4]) if
it satisfies the following conditions:

(Reflezivity) Al A;

(Monotonicity) If a - b and a C a', b C V', then
a' kb
akFbA a,AFbd

(Cut) akb

Theorem 2.1 Let Il be a stable consequence relation.
Define the following consequence relation detween seis
of propositions:

abty b=a:blF L.

Then by is a Scott consequence relation and a : bl A
if and only ifa by b, A.

A distinctive feature of stable consequence relations, a
feature that makes them inappropriate as a basis for
nonmonotonic reasonig systems, is the validity of the
following rule:

a:b,BIFA
(Symmetry) a:b,AFB

It is this rule that actually reduces default-type
sequents to monotonic disjunctive, or ‘multiple-
conclusion’, rules. Nevertheless, we will see that stable
consequence relations constitute an important ‘upper
bound’ on reasonable nonmonotonic systems. In other
words, for reasons that will become clear from what
follows, all such systems should contain only rules that
are also valid for stable consequence relations.

The main lesson from the theorem is that in order
to obtain nontrivial nonmonotonic consequence rela-
tions, we must reject one of the four rules constituting
the definition of a stable consequence relation. As we
will show below, default logic and modal nonmono-
tonic logics give rise to two basic kinds of reasoning.
One of them, which is associated with autoepistemic
logic, involve rejection of (Reflexivity) and accept the
rest of the rules. The second kind of reasoning is as-
sociated with default logic and modal nonmonotonic
logics based on ‘negative introspection’; it is charac-
terized by rejecting (Factoring). Consequently, we in-
troduce the following definitions:

Definition 2.3 A default consequence relation will be
called autoepistemic if it satisfies (Cut), (Consistency),
(Positive Closure) and (Factoring) and strongly au-
toepistemic if it also satisfies (Positive Consistency).
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Definition 2.4 A default consequence relation will be
called reflezive if it satisfies (Cut), (Consistency), (Re-
flexivity), (Negative Closure) and (Negative Factor-
ing).

Below we are going to consider these systems in
detail?®.

2.1 AUTOEPISTEMIC CONSEQUENCE
RELATIONS

The majority of nonmonotonic formalisms have two
components. The first component is the logical frame-
work, e.g., some modal logic or a set of defaults. The
second component involves a stipulation what sets of
propositions we should consider as intended, or ‘pre-
ferred’ ones. For Reiter’s default logic these are ex-
tensions, while for autoepistemic logic it is stable sets
and stable expansions. The relation between these two
components is usually more complex than in the mono-
tonic case. In usual, monotonic, logical systems the
set of all theories (that is, sets of propositions closed
with respect to the rules of the system) determines
in turn the source provability relation. Unfortunately,
this useful property of mutual determination holds nei-
ther for default logic nor for modal nonmonotonic for-
malisms. In both these cases different systems may de-
termine the same set of ‘preferred’ objects and hence
the same nonmonotonic inference. What complicates
matters still further is that, in general, the set of such
objects does not change monotonically with the growth
of the underlying system. However, we will show that
both for default logic and modal nonmonotonic logics
there are rules that preserve ’preferred’ sets of propo-
sitions. Such rules can be considered as providing a
primary characterization of ‘logical paradigms’ behind
these systems of nonmonotonic reasoning.

We will begin with autoepistemic logic. Let Cn(u : v)
denote the set of all consequences of the pair of sets
(u,v), U the complement of u. The following defini-
tion gives a description of the key concepts involved in
autoepistemic reasoning.

Definition 2.5 Let I be a default consequence rela-
tion.

1. A set of propositions u will be called stable in I-
(or IF-stable) if it is deductively closed and satis-
fies the following condition:

Cn(u: %) Cu;
2. u will be called an ezpansion in IF (or I--

expansion) if
u = Cn(u:9).

2 All the results in the next two sections, except for The-
orem 2.5, were proved in [1].

As we have said, usually sets of ‘preferred’ nonmono-
tonic objects do not change monotonically with the
growth of the source system. Still, the following
lemma, proved in [1], shows that under certain con-
ditions we may have more regular behavior.

Lemma 2.2 Let Iy and IF; be two default conse-
quence relations.

1. If Ik Clk;, then any IF3-stable set is Iy -stable.

2. If k1 Clko and Ik and Ik have the same stable
sets, then any |y -ezpansion is a IF3-ezpansion.

The lemma shows that the set of stable sets diminishes
monotonically with the growth of a consequence rela-
tion (this indicates that stable sets are actually mono-
tonic objects) and that in any interval in which this
set is not changing, the set of expansions grows mono-
tonically with the growth of the consequence relation.
These facts make it possible to demonstrate that the
rules of autoepistemic consequence relations preserve
the objects in question.

For an arbitrary consequence relation I, we let IF2¢
(IF*e¢, IF*) denote the least autoepistemic (resp., the
least strongly autoepistemic and the least stable) con-
sequence relation containing I. These consequence re-
lations can be described alternatively as consequence
relations obtained from I+ by adding the appropriate
rules and axioms.

The following theorem shows that, as far as only stable
sets are involved, stable consequence relations form a
representative class:

Theorem 2.3 For any default consequence relation
Ik, IF* is the greatest consequence relation having the
same stable sets as IF.

As we said earlier, stable sets behave essentially as
monotonic objects. In fact, they can be considered as
sets of propositions that are closed with respect to the
sequents of a default consequence relation in the sense
that if positive premises of a sequent belong to a stable
set u and negative premises do not belong to u, then
the conclusion must belong to u. In fact, the set of
stable sets can be seen as providing a primary charac-
terization of a default consequence relation; adding or
deleting rules or sequents that change this set involves
a significant change of the information embodied in a
consequence relation. This gives rise to a natural con-
straint on the rules we might consider acceptable in
various applications of nonmonotonic reasoning: any
such rule should be valid in stable consequence rela-
tions. In other words, it must follow from the four
basic rules involved in their definition—(Cut), (Con-
sistency), (Reflexivity) and (Factoring).

The next theorem shows that autoepistemnic conse-
quence relations in general form a representative class
with respect to both stable sets and expansions.
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Theorem 2.4 For any default consequence relation
I+,

1. |F2¢ has the same stable sets and ezpansions as I,

2. IF*2¢ has the same stable seis and consistent ez-
pansions as |F.

As an immediate consequence of Lemma 2.2, we ob-
tain that any consequence relation that contains I and
is included in IF%¢ has the same stable sets and expan-
sions as IF. Consequently, addition of any of the rules
involved in the definition of an autoepistemic conse-
quence relation does not change stable sets and ex-
pansions. Similarly, (Positive Consistency) does not
change stable sets and consistent expansions, and (Re-
flexivity) does not change stable sets.

It is easy to show that, in any consequence relation
satisfying (Reflexivity), expansions coincide with sta-
ble sets (since for such relations u C Cn(u : v), for
any u,v). Thus, (Reflexivity) does not preserve ex-
pansions. Moreover, even a weaker form of reflexiv-
ity, (Positive Consistency), always forces the set of all
propositions to be an expansion, though it preserves
consistent expansions.

The main conclusion that can be made from the
above results is that autoepistemic consequence rela-
tions provide an admissible framework for autoepis-
temic reasoning. In the next section we will present a
similar result for default logic.

2.2 DEFAULT LOGIC AND REFLEXIVE
CONSEQUENCE RELATIONS

Reiter ([15]) defines a default theory as a pair A =
(W, D), where W is a set of propositions and D a set
of default rules of the form A : MB,,...,MB;/C.
The connection between default theories and default
consequence relations can be established by represent-
ing propositions from W as sequents @ : @ IF A and
default rules from D as sequents

A:-B;,...,mB:FC.

This translation will be denoted by ¢r(A). As can be
seen, it agrees with the informal meaning of default
sequents given in the Introduction. Note also that the
translation is reversible, provided we replace sets of
positive premises in default sequents by their conjunc-
tions. In other words, a default sequent A,,..., A, :
By, ..., By IF C is representable by a default

AiA---ANA, :M-By,....M-B;/C.

Reiter’s default logic is based on the notion of exten-
sion. As is well-known, extensions can be defined using
a certain iterative construction (see [15], Theorem 2.1).
It turns out that this construction can be captured in
our system through the use of the rule (Cut) given

above. The following definition gives a formalization
of the notion of extension in the framework of iterative
consequence relations, that is, default consequence re-
lations satisfying (Cut).

Definition 2.6 Let IF be an iterative consequence re-
lation. A set of propositions u will be called an ezten-
sion in |- (or |F-extension) if

u=Cn(0: ).

It can be shown that if I is an iterative consequence
relation, then any IF-extension is a IF-expansion (and
hence a IF-stable set). The following theorem shows
that iterative consequence relations and I--extensions
provide a proper generalization of Reiter’s default
logic.

Theorem 2.5 Let A be a default theory and -5 the
least sterative consequence relation containing tr(A).
Then extensions of A coincide with |F4-extensions.

Just as for the case of expansions, iterative conse-
quence relations are not determined uniquely by their
extensions. But the following lemma (also proved in
[1]) shows that in cases when the set of stable sets re-
mains the same, the set of extensions also grows with
the growth of the consequence relation.

Lemma 2.6 Let Iy and Ik be tterative consequence
relations. If IF1ClFo and IFy and |k, have the same
stable sets, then any Iy -eztension is a IFo-eztension.

The lemma allows us to single out rules that preserve
extensions. It turns out that reflexive consequence
relations (see Definition 2.4) provide an admissible
framework for extension-based default reasoning.

We let IF" denote the least reflexive consequence re-
lation containing IF. In other words, this is a conse-
quence relation obtained from IF by adding the appro-
priate rules.

Theorem 2.7 For any iterative consequence relation
ik, IF" has the same stable sets and ertensions as IF.

It can be shown that the rule (Factoring) does not
preserve extensions. On the other hand, as we already
mentioned, (Reflexivity) obliterates the distinction be-
tween stable sets and expansions. This indicates that
expansion- and extension-based kinds of nonmono-
tonic reasoning are in some sense incompatible—each
admits inference steps that are inadmissible in the
other. However, the rules common to both autoepis-
temic and reflexive consequence relations clearly pre-
serve all the objects we have considered, i.e. stable
sets, expansions and extensions. This suggests the fol-
lowing definition.

Definition 2.7 An iterative consequence relation will
be called introspective if it satisfies (Consistency),



68 A. Bochman

(Positive Closure), (Negative Closure), (Positive Con-
sistency) and (Negative Factoring).

Introspective consequence relations ‘own’ some useful
features that are common to autoepistemic and re-
flexive consequence relations, most important of them
being the possibility of replacing deductively equiva-
lent premises, both positive and negative ones (this is
a consequence of Positive and Negative Closure). In
addition, introspective consequence relations form a
representative class with respect to all three kinds of
objects we have considered.

3 MODAL DEFAULT
CONSEQUENCE RELATIONS

In this section we will introduce the notion of a modal
default consequence relation. As we will see, modal
default consequence relations provide a natural gener-
alization of modal nonmonotonic logics.

Let £ be the set of all propositions in a propositional
language with a modal operator L. For any set of
propositions u from L, we let Lu denote the set of
all propositions of the form LA, where A € u. The
notation —u will have a similar meaning.

Definition 3.1 A default consequence relation in £,
will be called modal if it satisfies the following two
modal axioms:

A:Q0WFLA 0:AlF~LA.

If we interpret L as an operator of belief, the two ax-
ioms imply, in effect, that positive premises of any
sequent include propositions that are believed and
negative premises include propositions that are not
believed®. Consequently, the following understanding
of default sequents a : b IF A in modal default conse-
quence relations will be appropriate: “If all proposi-
tions from a are believed and all propositions from b
are not believed, then infer A”. This interpretation is
in agreement with the following strengthening of the
notion of a modal consequence relation:

Definition 3.2 A modal default consequence relation
will be called regular if it satisfies the following two

rules:
a:bIFLA a,A:bIFB
a:bI+ B ’
a:blF-LA a:b,AIFB
a:bIFB

Regular consequence relations admit a natural inter-
pretation similar to an autoepistemic interptretation
proposed for autoepistemic logic (see [14]). By an MD-
tnterpretation we will mean any consistent deductively

3Note that any modal default consequence relation sat-
isfies (Consistency).

closed set in £;. For any MD-interpretation u we de-
fine the following two sets:

up = {B|LBeu} u*={B|-LBe€u}

The set ur can be naturally interpreted as the set of
propositions that are believed in u, while ul as the set
of propositions that are not believed in u. Note that,
in contrast to autoepistemic logic, the interpretation
is partial with respect to modal propositions. Now, for
any set of MD-interpretations T, we define the follow-
ing consequence relation, denoted by IFp:

(VueT)(aCur AbC ul = Acu).

Informally, a default sequent a : b Ik A is valid if
and only if, for any MD-interpretation u from T, if all
propositions from a are believed in u and all propo-
sitions from b are not believed in u, then A holds in
u.

It is easy to show that IFr is a regular consequence re-
lation. Moreover, the following theorem shows that
such interpretation-based default consequence rela-
tions provide a complete characterization of regular
modal consequence relations.

‘Theorem 3.1 For any regular default consequence re-
lation b there ezists a set of theories T such that
IF=lkp.

As the theorem shows, even regular default conse-
quence relations are determined by arbitrary deduc-
tively closed sets of modal formulas. This show, in
particular, that modal default consequence relations
in general have no ‘modal content’ in the sense that
they impose no restriction whatsoever on the modal
operator. However, we will see that additional rules
of the kind described earlier correspond to well-known
modal axioms for L.

Now we will show that modal default consequence re-
lations can be considered as a generalization of modal
nonmonotonic logics. To begin with, note that the
modal axioms imply that IF-stable sets in modal de-
fault consequence relations are stable sets in the usual
sense, that is, they are deductively closed sets satisfy-
ing the following two conditions:

o If A€ u, then LA € y;
o If A¢ u, then ~LA € u.

Let IF, denote the least modal default consequence re-
lation containing a set of (modal) propositions u (that
is, ®: 0 I A, for any A € u). Clearly, I, is simply
the set of all sequents obtained from u by applying
the two axioms and two rules of modal default con-
sequence relations. The following simple lemma was
proved in [1):

Lemma 3.2 a: bk, A if and only if A € Th(uULaU
-Lb).
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As an immediate consequence of this lemma, we obtain
that IF,-stable sets are those deductively closed sets of
propositions s that satisfy the condition

Th(uu LsU ~L3) C s.

Thus, IF,-stable sets are exactly stable sets containing
u (see [14]). Similarly, IF,-expansions are sets satisfy-
ing the condition
8 = Th(u U Ls U -L3),

and hence they coincide with Moore’s stable expan-
sions of u. Thus, Moore’s autoepistemic logic can
be adequately translated into the framework of modal
default consequence relations. Furthermore, applying
now Theorem 2.4, we can infer that autoepistemic logic
can be faithfully represented by means of modal au-
toepistemic consequence relations. In the next section
we will complete the picture by demonstrating that
the latter exactly correspond to consequence relations
based on the modal logic K45.

Now we will turn to modal nonmonotonic logics in gen-

eral. It is easy to show that the rule (Cut) in modal de-

fault consequence relations implies the following rule:
a:blFA

a:blFLA

(In fact, it can be shown that for regular consequence
relations the two rules are equivalent.) Thus, (Cut)
captures the effect of the necessitation rule A/LA in
modal logics.

(Necessitation)

Let S be a modal logic containing the necessitation
rule. We will say that a modal default consequence
relation is an S-consequence relation if it is an iterative
consequence relation such that if A is an instance of
a modal axiom from S, then @ : @ IF A. For any set
of propositions u, let IF5 be the least S-consequence
relation containing u. This consequence relation can
also be described as the set of all sequents obtained
from u by using the axioms of S, the axioms and rules
of modal default consequence relations and the (Cut)
rule. The following lemma was also proved in [1]:

Lemma 3.3 a : b IF5 A if and only if A € Cns(u U
Lau-Lb). :

As a consequence of the lemma, we obtain that IF5-
extensions are sets of propositions satisfying the fol-
lowing condition:

8 = Cns(uU-L3).

Thus, I -extensions coincide with S-expansions of u
as defined in [11] (see also [13]). It follows that a modal
nonmonotonic reasoning based on ‘negative introspec-
tion’ can be also represented in terms of modal default
consequence relations and the notion of IF-extension.
Moreover, Theorem 2.7 implies that reflexive conse-
quence relations provide an adequate framework for
reasoning of this kind. In the next section we will con-
sider how and to what extent various modal axioms
influence such a reasoning.

3.1 MODAL CONSEQUENCE RELATIONS
VS. MODAL NONMONOTONIC
LOGICS

In this section we will consider the correspondence be-
tween modal nonmonotonic logics and their associated
default consequence relations. It follows from the re-
sults described above that in order to provide a char-
acterization of modal consequence relations that can
serve as representations of modal nonmonotonic logics,
we may restrict our attention to consequence relations
that are generated by sets of (modal) propositions.

Definition 3.3 A modal default consequence relation
I will be called prime if it coincides with the least
iterative consequence relation containing Cn(0 : 0).

It is easy to show that a modal consequence relation is
prime if and only if it is the least iterative consequence
relation containing some set of propositions. As has
been said, the rule (Cut), that characterizes iterative
consequence relations, is equivalent to the modal ne-
cessitation rule. Consequently, Lemma 3.3 could be
replaced by a more general

Lemma 3.4 I is a prime consequence relation if and
only if, for any a, b and A, a: bIF A is equivalent to

A € Cnn(Cn(0:0)U Lau~-Lbd),
where Cnn denotes the provability operator of N.

The lemma shows that, in general, prime modal de-
fault consequence relations correspond to modal non-
monotonic logics based on the pure logic of necessi-
tation N, that is, a modal logic that has no proper
modal axioms and the necessitation rule as the only
additional modal rule (see [3]).

An important consequence of the lemma is the follow-
ing

Theorem 3.5 Any prime modal default consequence
relation is regular.

The set Cn(® : @) may include all instances of modal
axioms characterizing various modal logics. An impor-
tant question that arises here is to what extent differ-
ent modal axioms appearing in Cn(@ : @) influence the
general properties of the corresponding consequence
relation, since, as is well-known, different modal logics
may determine the same nonmonotonic inference—see
[9]. In the rest of this section we will give represen-
tation results for a number of well-known modal non-
monotonic logics. It will turn out that most of them
posses a simple and natural characterization in terms
of different structural rules that hold in the associated
default consequence relations.

We begin with demonstrating that prime K4-
consequence relations can be characterized as conse-
quence relations that satisfy certain deduction rules.
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Theorem 3.6 I is a prime K4-consequence relation
if and only if it is ilerative, satisfies (Positive Closure)
and the following two modal deduction rules:
(Positive Deduction)
Aja:bl+FB
a:blFLA—- B’

(Weak Negative Deduction)
a:AbI+B

a:blt-~L1LAL-LA— B’

The theorem gives an example of a correspondence be-
tween rules of default consequence relations and usual
modal axioms. Note that, given (Positive Deduction),
the (Positive Closure) rule can be shown to be equiv-
alent to the modal K axiom.

The two deduction rules are rules that permit propo-
sitions to be transferred from premises to conclusions.
Note that these rules are reversible. Consequently, by
successive applications of these rules, any sequent can
be transformed to a provable proposition:

Corollary 3.7 For prime K4-consequence relations,
any default sequent Ay,..., A, : By,...,By I+ C is
equivalent to a provable formula
LAy A---ALAs A[A-L1])
AL-LByA---AL-LB,, —C.

(where the conjunct ~L_L s present only if the set of
negative premises is not empty).

It can be shown that prime K4-consequence relations
satisfy all the rules of introspective consequence re-
lations, except (Positive Consistency). Adding the
latter amounts to addition of the modal D axiom
LA — -L-A.

Theorem 3.8 The following conditions are equiva-
lent:

1. IF is a prime KD 4-consequence relation;

2. |& is iterative, satisfies (Positive Closure), (Posi-
tive Deduction) and the following rule:

(Negative Deduction)
a: AbI+B

a:blFL-LA— B’

3. I 4s introspective and satisfies (Positive Deduc-
tion).

Prime KD4-consequence relations satisfy a more
strong rule of negative deduction that does not in-
clude the conjunct ~L. Note also that, in view of
(3), the new rule is actually a consequence of (Positive
Deduction) and the rules of introspective consequence
relation. Thus, we have

Corollary 3.9 For prime KDJ-consequence rela-
tions, any sequent A;,...,An : By,...,Bm IF C s
equivalent to a provable formula

LAA---ALA,AL-LByA---AL-LBy, = C.

As can be seen, taking into account the correspondence
between default sequents and ordinary default rules
described earlier as tr(A), the above transformation of
default sequents into modal formulas is in fact identical
with the modal translation of defaults suggested by
Truszczynski in [20]. It should be noted, however, that
the above Corollary restricts the applicability of this
translation to introspective consequence relations. We
will return to this translation below when studying the
possibility of embedding default consequence relations
into modal ones.

Replacing the D axiom by the more strong reflexivity
axiom LA — A amounts to adding the (Reflexivity)
rule. Consequently, we obtain the following character-
ization of prime S4-consequence relations:

Theorem 3.10 It is a prime S4-consequence relation
if and only if it is a reflezive consequence relation sat-
isfying (Positive Deduction).

Now we will consider autoepistemic consequence re-
lations. It turns out that in prime K4-consequence
relations the rule (Factoring) is equivalent to the
modal 5 axiom =LA — L-~LA. Moreover, we have
that prime K45-consequence relations actually coin-
cide with modal autoepistemic consequence relations.

Theorem 3.11 The following conditions are equiva-
lent:

1. I+ is a prime K 45-consequence relation;

2. |+ is sterative and satisfies (Positive Deduction)
and the following rule:

(Strong Negative Deduction)
a: A b+ B

a:biF-LA— B’

3. IF is a modal autoepistemic consequence relation.

Prime K45-consequence relations validate a still more
strong rule of negative deduction. Note, however, that,
since prime K45-consequence relations coincide with
autoepistemic consequence relations, this time both
(Positive Deduction) and the new negative deduction
rule are consequences of the rules of modal autoepis-
temic consequence relations.

Corollary 3.12 For prime K{5-consequence rela-
tions, any sequent Ay,...,An : By,...,Bn It C is
equivalent to a provable formula

LAiAN---ALA,A-LByA---A=LB,, = C.
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Since (Positive Consistency) is equivalent to the D ax-
iom and (Reflexivity) is equivalent to the modal re-
flexivity axiom, an immediate consequence of the last
theorem is the following characterization of strongly
autoepistemic and stable consequence relations.

Corollary 3.13 A I is a prime KD45-consequence
relation if and only if it is a strongly autoepistemic
consequence relation.

Corollary 3.14 I+ is a prime S5-consequence rela-
tion if and only if it is a stable consequence relation.

The equivalence of prime S5 and stable consequence
relations can now be combined with Theorem 2.1, and
we obtain that prime S5-consequence relations are
equivalent to Scott consequence relations. This fact
can be seen as the source of nonmonotonic degener-

ation of modal nonmonotonic reasoning based on S5
(cf. [18]).

To end this section, we introduce still another impor-
tant consequence relation.

As has been shown, stable consequence relations are
already monotonic. It turns out that there are two
weaker, nontrivial systems that are in some sense max-
imal. As was proved by Schwarz in [17], nonmonotonic
modal logics based on KD45 and SW5 are maximal
nonmonotonic logics satisfying certain natural condi-
tions. Schwarz proposed to treat nonmonotonic SW§5
as a plausible candidate for nonmonotonic logic of
knowledge.

As we have demonstrated, the first nonmonotonic logic
corresponds to strongly autoepistemic consequence re-
lations. It turns out that the characteristic axiom of
SWS5, the so-called ‘weak’ 5 axiom

AAN-LA— L-LA,
18 equivalent in our system to the following rule:

(Conditional Factoring)
a,B:blFA a:b,BIFA
a:bFB— A )

We will say that a default consequence relation is
strongly reflezive if it is reflexive and satisfies (Con-
ditional Factoring). We have the following result:

Theorem 3.15 I+ is a prime SW5-consequence re-
lation if and only if it is a regular strongly reflezive
consequence relation.

The results of this section show that there is a remark-
able correspondence between major structural types of
default consequence relations and well-known modal
nonmonotonic logics. This correspondence can also be
considered as a justification of the claim that partic-
ular modal axioms, as distinct from ordinary modal
propositions, are important for modal nonmonotonic

reasoning only to the extent they influence the struc-
tural properties of the associated modal consequence
relations.

4 REDUCTIONS AND
EMBEDDINGS

We let £, denote the subset of Ly consisting of all
propositions without occurrences of L; such proposi-
tions will be called objective. For any set of proposi-
tions u from Ly, we let u, denote the set uN L, and
U, the set £, \ u. Note that, for any modal default
consequence relation [, its restriction to £, is clearly
an objective default consequence relation having the
same structural rules as I. We will denote this objec-
tive subrelation by ,lF.

All nonmonotonic objects we have considered in this
paper were stable sets, and it is well-known that the
latter are uniquely determined by their objective sub-
sets (kernels). This suggests a possibility of reducing
modal nonmonotonic reasoning to nonmodal one. The
only question here is whether the reasoning about the
kernels can be accomplished entirely in a nonmodal
framework. This was the question we considered in
[1]. The main result proved there amounted to demon-
strating that if I is a modal introspective consequence
relation and u a stable set, then

e u is a [F-stable set iff u, is a ,IF-stable set;
o u i8 a |F-expansion iff u, is a ,lF-expansion;

e u is a ground IF-extension if and only if u, is a
olF-extension.

(Ground extensions are extensions which are stably
minimal, that is, there is no IF-stable set v such that
v C 4,.)

These results can be reformulated as saying that, for
consequence relations that are introspective, the re-
duction of modal consequence relations to their ob-
Jjective subrelations provides an adequate translation
with respect to stable sets, expansions and ground ex-
tensions. As to extensions in general, it was shown
that, for any introspective consequence relation I+, we
can construct an objective strongly autoepistemic con-
sequence relation such that its stable sets coincide with
kernels of I--stable sets and its expansions are exactly
kernels of IF-extensions.

Since introspective consequence relations form a rep-
resentative class of consequence relations with respect
to the key nonmonotonic objects, the above reduction
provides, in fact, the crucial step in a general transla-
tion from modal nonmonotonic logics to default logics.
It shows that objective subrelations of modal intro-
spective consequence relations embody all the essential
information about the corresponding modal nonmono-
tonic objects.
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We will consider below the reverse problem, namely
the problem of translating, or embedding, objective
default consequence relations into the corresponding
(prime) modal consequence relations.

It turns out that the maximal ‘host’ modal logic for ob-
jective introspective consequence relations is the logic
determined by the following Kripke frames: the set of
worlds M is the union of three disjoint sets M;, M,
and M3 (where M3 # @) and the accessibility relation
is [(M1 U Mg) X (M2 U Ma)] V) (M3 X Ma). We will
denote this logic by KD4I. This logic contains KD4
and is included in both S4F (see [19]) and KD45.
It is in fact equivalent to the logic KD4-3B3 in the
classification of [2].

Theorem 4.1 Any objective introspective conse-
quence relation coincides with the objective subrelation
of some prime KD4I-consequence relation.

In view of the above mentioned results, the embedding
is faithful with respect to stable sets, expansions and
ground extensions. Note also that in view of Corol-
lary 3.9, objective sequents in KID4I-consequence re-
lations are equivalent to their Truszczynski’s trans-
lations. Thus, it can be said that Truszczyrski’s
translation of defaults generates an exact translation
of objective introspective consequence relations into
prime KD4I-consequence relations. Moreover, it fol-
lows from Theorem 3.8 that prime KD4-consequence
relations are already introspective. Consequently, any
modal logic in the range (KD4—KD4I) can serve as
a host logic for such a translation.

The importance of the above theorem lies not only
in demonstrating that defaults can be translated into
modal formulas. What is even more important is that
it can be used to show that extension of objective
introspective consequence relations to modal KD4I-
consequence relations is conservative with respect to
provability of objective sequents. In other words, addi-
tion of the modal axioms of KDD4I to an objective in-
trospective consequence relation cannot result in prov-
ability of some new objective sequents. Formally, we
have

Theorem 4.2 Let 5 be an arbitrary set of objective se-
quents, IF] the least objective introspective consequence
relation containing 5, and Il'g the least prime KD4I-
consequence relation containing §. Then

IFg= Ik

The theorem says that, given a set of objective se-
quents §, an objective sequent is provable from § us-
ing all the rules and modal axioms that hold in prime
KD4I-consequence relations if and only if it is prov-
able from § using only the basic rules of introspective
consequence relations. This result complements the
results about reduction of introspective consequence

relations to their objective subrelations, discussed ear-
lier in this section, by showing that the latter are au-
tonomous with respect to provability of objective se-
quents.

Another consequence of the above embedding theo-
rem is the following result for reflexive consequence
relations:

Theorem 4.3 Any objective reflezive consequence re-
lation coincides with the objective subrelation of some
prime S4F-consequence relation.

Again, Theorem 3.10 implies that any modal logic in
the interval (S4—S4F) is appropriate for such an em-
bedding.

The next theorem shows that, as can be expected, the
logic SW5 is a modal counterpart of strongly reflexive
consequence relations.

Theorem 4.4 Any objective strongly reflezive conse-
quence relation coincides with the objective subrelation
of some prime S W5-consequence relation.

Theorem 3.15 can be used this time to show that SW5
is the only logic that permits the embedding.

Note that the above two theorems also imply that the
corresonding objective consequence relations are con-
servative with respect to their associated modal con-
sequence relations.

Finally, we will consider autoepistemic consequence re-
lations.

Theorem 4.5 Any objective (strongly) autoepistemic
consequence relation coincides with the objective sub-
relation of some prime K (D)4 5-consequence relation.

As the following theorem shows, for autoepistemic con-
sequence relations we have a perfect match between
objective and modal variants.

Theorem 4.6 Two modal autoepistemic consequence
relations having the same objective subrelations coin-
cide.

The theorem implies that there is a one-to-one corre-
spondence between prime K45-consequence relations
and objective autoepistemic consequence relations. In
other words, we have a full-fledged equivalence be-
tween autoepistemic logic and a particular kind of ob-
Jective default consequence relations. In fact, we have
more. As Konolige demonstrated, for any set of modal
propositions there exists a K45-equivalent set of dis-
Jjunctive clauses without nested occurrences of L (see
[6], Proposition 3.9). Now, taking into account the
deduction rules that hold for prime K45-consequence
relations (see Corollary 3.12), any such clause

“LAV---V2A, VLB V:---VLB,VC
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can be transformed into an objective sequent
Ay, ...,Apn: By,...,Bn Ik C.

Thus, any set of modal propositions can be assigned
an ‘autoepistemicaly equivalent’ set of objective se-
quents. For a set of propositions a, let a* denote the
corresponding set of objective sequents. The following
theoremn shows that provability in K45 is reducible to
provability of objective sequents in autoepistemic con-
sequence relations.

Theorem 4.7 For any set of modal propositions a
and any proposition A, A is provable from a in K45
if and only if any sequent from {A}* is provable from
a’ using the rules of an (objective) autoepistemic con-
sequence relation.

This result shows, in fact, that the modal logic K45 it-
self is reducible to objective autoepistemic consequence
relations. As a corollary, we also have a reduction of
modal logics KD45 and S5 to objective strongly au-
toepistemic and stable consequence relations, respec-
tively.

5 CONCLUSIONS

We see the notion of a default consequence relation
as the main contribution of the paper. As the re-
sults presented above demonstrate, it can be consid-
ered as a natural generalization of default logic, on
the one hand, and modal nonmonotonic logics, on the
other. Moreover, default consequence relations have
given us a convenient ‘common ground’ for studying
the relationship between these two formalizations of
nonmonotonic reasoning. It should be noted, that the
suggested translation, or embedding, of different kinds
of objective default consequence relations into the cor-
responding modal logics (as well as the reverse reduc-
tions described in [1]) have an advantage over earlier
attempts in that they are not restricted as such to
particular ‘preferred’ nonmonotonic objects. Rather,
they establish a direct correspondence between modal
and default-based formalizations of different kinds of
nonmonotonic reasoning.

Both default and modal nonmonotonic formalisms
have advantages of their own. For nonmodal de-
fault systems it is mainly conceptual simplicity and
avoidance of nested layers of modalities. For modal
formalisms it is convenience of working with familar
modal constructions, for which the underlying theory
and semantics already exist. As the results of the pa-
per show, in most cases we can freely choose each of
these formalisms.

There are many other possibilities of using the sug-
gested formalism of default consequence relations. We
will mention here only one such possibility. Instead
of using a single modal operator both for positive and

negative assumptions, we may consider dimodal de-
fault consequence relations defined in the language
with two modal operators, say K and not such that,
roughly, K is intended to characterize positive assump-
tions and not is ‘responsible’ for negative assumptions
(nonmonotonic systems of this kind were suggested
in [7] and [8]). Consequently, the two modal axioms
of modal default consequence relations should be re-
placed by the following pair of axioms:

A:0IFKA 0: Al not A.

The main distinctive feature of such systems, as com-
pared with ordinary modal default consequence rela-
tions, is that the Consistency principle, A: AIF L, is
no longer valid. (As we mentioned, (Consistency) is an
immediate consequence of the two original modal ax-
ioms.) Such rules as (Cut), (Positive Closure) and (Re-
flexivity) will characterize now only the K operator,
while, e.g., (Negative Closure) will impose a (normal-
ity) constraint on not. Rules that involve both posi-
tive and negative premises, such as (Consistency) and
(Factoring), will characterize the relation between the
two opertors. Note, for example, that a modal axiom
KA — -not A implies (Consistency), while (Factor-
ing) implies ~-not A — KA. Finally, it is interesting
to note that rejection of Consistency creates a possi-
bilty of nontrivial systems that use both (Reflexivity)
and (Factoring)?, a possibility that were excluded in
the present paper.

* A system of this kind is suggested, in fact, in [16] as a
basic logical paradigm for logic programming.
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Abstract

‘We present a logic for representing and reasoning with
qualitative statements of preference and normality and
describe how these may interact in decision making
under uncertainty. Our aim is to develop 2 logical
calculus that employs the basic elements of classical
decision theory, namely probabilities, utilities and ac-
tions, but exploits qualitative information about these
elements directly for the derivation of goals. Prefer-
ences and judgements of normality are captured in a
modal/conditional logic, and a simple model of action
is incorporated. Without quantitative information, de-
cision criteria other than maximum expected utility are
pursued. We describe how techniques for conditional
default reasoning can be used to complete information
about both preferences and normality judgements, and
we show how maximin and maximax strategies can be
expressed in our logic.

1 Introduction

We typically expect a rational agent to behave in a manner
that best furthers its own interests. However, an artificial
agent might be expected to act in the best interests of a user
(or designer) who has somehow communicated its wishes
to the agent. In the usual approaches to planning in Al a
planning agent is provided with a description of some state
of affairs, a goal state, and charged with the task of discov-
ering (or performing) some sequence of actions to achieve
that goal. This notion of goal can be found in the earli-
est work on planning and persists in more recent work on
intention and commitment [10]. In most realistic settings,
however, an agent will frequently encounter goals that it
cannot achieve. As pointed out by Doyle and Wellman
[12] an agent possessing only simple goal descriptions has
no guidance for choosing an alternative goal state toward
which it should strive.

Straightforward goal-driven behavior teads to be inflexible:
an ageat told to ensure that part A and part B are at location
L by 5P M will be unable to do anything if it cannot locate
B or if something prevents it from reaching L by SPM. One
might suppose that the agent should at least deliver A to L

as close to SPM as possible. While such partial fulfillment
of deadline goals [16] undoubtedly arises frequently is prac-
tice, more general mechanisms will often be required. If A
and B can’t be delivered, perhaps alternate parts C and D
should be; or if the SPM deadline can’t be met, the agent
should walt until next week. To this end, a recent trend in
planning has been the incorporation of decision-theoretic
methods for constructing optimal plans [11]. Decision the-
ory provides most of the basic concepts we need for rational
decision making, in particular, the ability to specify arbi-
trary preferences over circumstances or outcomes. This
allows desired outcomes or goals (and hence appropriate
behaviors) to vary with context.

Most decision-theoretic analysis is set within the frame-
work of maximum expected utility (MEU). One impediment
to the general use of such decision-theoretic tools is the re-
quirement to have both numerical probabilities and utilities
associated with the possible outcomes of actions. Itis quite
conceivable that such information is not readily available to
the agent. We can often expect users to present information
in a qualitative manner, including qualitative preferences
over outcomes (one outcome or proposition is preferred to
another) and qualitative probabilities (describing the rela-
tive likelihood of propositions or outcomes). The ability to
reason directly with such qualitative constraints is therefore
crucial. An appropriate knowledge representation scheme
will allow the expression of constraints of this form and
allow one to logically derive goals and reasonable courses
of action, to the extent the given information allows.!

'While the foundations of decision theory are, in fact, based
on such qualitative preferences [26, 29], the move to numerical
utilities (and probabilities) requires that a preferences and likeli-
boods be calibrated by means of questions concerning acceptable
exchanges between outcomes and lotteries. For an agent behaving
according to the preferences of some user, this requires that either
a) the user’s preferences be so completely specified that such cal-
culations can be made; or b) the user (or the source of preference
information) be available to be queried about preference informa-
tion as the need arises. Furthermore, a complete calibration of
just the preference ranking, in the most fortunate circumstances,
requires a number of queries at least as large as the number of pos-
sible worlds (exponential in the number of propositional atoms).
Such a mechanism is also often criticized because the queries re-
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In this paper, we describe a logic and natural possible worlds
semantics for representing and reasoning with qualitative
probabilities and preferences, and suggest several reason-
ing strategies for qualitative decision making using this
logic. We can represent conditional preferences, allowing
(derived) goals to depend on context. Furthermore, these
conditional preferences are defeasible: 1 might have a gen-
eral preference for the proposition A (e.g., that parts be
delivered to customers on time) but have a more specific
“defeating™ preference for —A if a customer’s account is
past due. Semantically, preferences will be captured by an
ordering over possible worlds, corresponding to an ordinal
value function. The logic that captures such default pref-
erences will exactly match existing conditional logics for
default reasoning and belief revision [4, 7, 8]. Furthermore,
the component of the logic for capturing qualitative prob-
abilities will be isomorphic, with a (separate) normality
ordering on worlds representing their relative likelihood.

In order to strengthen possible conclusions, we will also
present reasoning strategies for completing information
about preferences and likelihoods, in essence, making as-
sumptions about unstated constraints. In addition, we de-
scribe several ways of making decisions with such com-
pleted information. These decision making strategies are
motivated by the fact that the scales of normality and pref-
erence on which worlds are ranked are incomparable. This
reflects the fact that user specified constraints provide qual-
itative information about the structure of the two rankings,
not their relative magnitudes. We will discuss conditions
under which decisions are sound in this framework.

In Section 2, we present the basic logic of preferences and
its semantics, and show how existing techniques for con-
ditional default reasoning can be used to make various as-
sumptions about incomplete prefereace orderings. In Sec-
tion 3, we add normality orderings to our semantics and
describe a logic for dealing with both orderings. We de-
scribe the derivation of ideal goal states, roughly, the best
situations an agent can hope for given certain fixed circum-
stances. This generalizes the usual notion of a goal in Al,
for such goals are context-dependent and defeasible, and
can be derived from more basic information rather than
simply being asserted directly by a user. Such goals do not
take into account the ability of an agent to change the fixed
circumstances from which they are derived, nor the poten-
tial inability of an agent to achieve a goal. In Section 4, we
explore a more realistic notion of goal that accounts for a
simple form of ability. In planning, as in the decision theory,
the ultimate aim is to derive appropriate actions to be per-
formed that will achieve derived goal states. The ability of
an agent to affect the world will have a tremendous impact
on the actual goal states it attempts to achieve. One feature
that becomes clear in our model is that, given incomplete
knowledge, various behavioral strategies can emerge. We
show how these can be expressed in our logic. Finally, in
Section S, we point out some related work, and on-going

quire answers to which a user does not have ready access or might
be uncertain [13].

investigations into how the trade-offs between utility and
probability can be captured in a qualitative manner. We also
point out some interesting connections to deontic logic.

2 Conditional Preferences

A goal is typically taken to be some proposition that we
desire an agent to make true. Semantically, a goal can be
viewed as a set of possible worlds, those states of affairs
that satisfy the goal proposition [10]. Intuitively, if we ig-
nore considerations of ability, the set of goal worlds should
be those considered most desirable by an agent (or its de-
signer). To achieve all goals is to ensure that the actual
world lies within this desirable set.

Unfortunately, goals are not always achievable. My robot’s
goal to bring me coffee may be thwarted by a brokea coffee
maker. Robust behavior requires that the robot be aware of
desirable alternatives (“If you can’t bring me coffee, bring
me tea”). Furthermore, goals may be defeated for reasons
other than inability. It is often natural to specify geaeral
goals, but list exceptional circumstances that make the goal
less desirable than the alternatives. For instance, a gen-
eral preference for delivering parts within 24 hours may
be overridden when the account is past due (which may in
turn be overridden if the customer is important enough). To
capture these ideas, we propose a generalization of stan-
dard goal semantics. Rather than a categorical distinction
between desirable and undesirable situations, we will rank
worlds according to their degree of preference. The most
preferred worlds correspond to goal states in the classical
sense. However, when such states are unreachable, a rank-
ing on alternatives becomes necessary. Such a ranking can
be viewed as an ordinal value function.

The basic concept of interest will be the notion of condi-
tional preference. We write I( B|A), read “ideally B given
A,” toindicate that the truth of B is preferred, given A. This
holds exactly when B is true at each of the most preferred of
those worlds satisfying A. From a practical point of view,
I(B|A) means that if the agent (only) knows A, and the
truth of A is fixed (beyond its control), then the agent ought
to ensure B. Otherwise, should —B come to pass, the agent
will end up in a less than desirable A-world. The statement
can be roughly interpreted as “If A, do B.” We propose
a bimodal logic CO for conditional prefereaces using only
unary modal operators. The presentation is brief. Further
details can be found in [3, 7].

2.1 The Logic CO

We assume a propositional bimodal language Lp over a set
of atomic propositional variables P, with the usual classical
connectives and two modal operators O and B, Our possible
worlds semantics for preference is based on the class of
CO-models, of the form M = (W, <, @), where W is a set
of possible worlds, ¢ is a valuation function, and < is a
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Figure 1: A CO-model
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transitive connected binary relation on W.2 Thus, < is a
total preorder over W. In other words, W consists of a set
of <-equivalence classes or clusters of equally preferred
worlds, with these clusters being totally ordered by <. We
take < to represent an ordering of preference: v < w just
in case v is at least as preferred as w. This ordering is
taken to reflect the desirability of situations, however this is
to be interpreted (e.g., personal utility, moral acceptability,
etc.) Figure 1 illustrates a typical CO-model. The truth
conditions for the modal connectives are

1. M |5 Oaiff foreach v such thatv < w, M |5, a.
2. M [z, Baiff foreach v such that w < v, M |5, a.

Oa is true at a world w just in case o is true at all worlds

at least as preferred as w, while Oa holds just when o
hoids at all less preferred worlds. The dual “possibility”
connectives are defined as usual: Oa =4 —-0O-a means
a is true at some equaliy or more preferred world; and

Sa =g ~O-a means a is true at some less preferred

world. Ba =4 Oa A Ba and Sa =4 Oa V Sa mean o
is true at all worlds and at some world, respectively. The
logic CO is axiomatized in [3, 7] (see also Section 4).

22 Expressing Conditional Preferences

We now define a conditional connective I(—|-) to express
conditional preferences. I(B|A) can be read as “In the
most preferred situations where A holds, B holds as well,”
or “If A then ideally B.” Intuitively, I(B|A) should hold
just when B holds at the most ideal A-worlds.* These truth
conditions can be expressed in L (see [3, 7]):

I(B|A) =4 OD-AVSAADMADB). (1)

This can be thought of, as a first approximation, as ex-
pressing “If A then an agent ought to ensure that B,” for

2Relation < is connectediff w < v or v < w for all v, w.

SWhile w < v usually means v is a preferred outcome, the
usual conveation in Al is to “prefer” minimal models, hence we
take w < v to mean w is preferred.

4Of course, nothing in our models forces the existence of such
minimal A-worlds, but our definition is adequate in this case as
well [7]. The conditional holds vacuously when A is false at all
worlds.

Toward a Logic for Qualitative Decision Theory n

making B true easures an agent ends up in the best pos-
sible A-situation. We note that an absolute preference A,
capturing the standard unconditional goal semantics, can be
expressed as I(A|T), or equivaleatly, SOA. We abbrevi-
ate this as I(A) and read this as “ideally A”. This can be
read as expressing an unconditional desire for A to be true.
The mode! in Figure 1 satisfies I( B|A) and I(A = B).

The dual of preference gives a notion of toleration or “don’t
care conditions.” If —I(—~B|A) holds, then in the most
preferred A-situations it is not required that ~B. This
means there are ideal A-worlds where B holds, or that B is
“tolerable” given A. We abbreviate this senteace T'(B|A).
Loosely, we can think of this as asserting that an agent is
permittedto do B if A. Unconditional toleration is denoted
T(A) and stands for ~I(—A), or equivalently, 5OAS We
note that the relative prefereace of two propositions can be
expressed directly in CO. We write A <p B to mean A is
at least as preferred as B (intuitively, the best A-worlds are
at least as good as the best B-worlds), and define it as:

A<p B=4 B(B>0A)

Another useful notion is that of strict preference. If some
proposition is more desirable than its negation no matter
what other circumstances hold (e.g., deliveries to customer
C must be on time), we can assert

B(cooc)

which ensures that every C-world is preferred to any ~C-
world. Of course, we cannot a priori abolish such situa-
tions, for they may occur due to events beyond an agent’s
control, and the relative preference of these strictly dispre-
ferred worlds is important. But in achieving stated goals
condition ~C will be avoided if at all possible. These strict
preferences can also be combined and prioritized [8].

The properties of the connective I are ideatical to those of
the conditional connective => defined in [2, 7] for default
reasoning (see also Section 4). They are distinguished sim-
ply by their reading and the interpretation of the underlying
ordering <. As one shouid expect, absolute preferences, as
well as preferences in any fixed context, must be consistent,
for the following is a theorem of CO (for any possible A):

I(B|A) D -~I(-B|A)
However, an agent’s preferences needa’t be complete, for
T(B|A) A T(—BJ|A) is generally consistent. The property
of preferential detachment holds in CO:
I(B|A) AI(A) D I(B)
However, the principle of factual detachment
I(B|JA)AA D I(B)
SIdeality and toleration are dual in exactly the sense that ne-
cessity and possibility are. In deontic contexts, the connectives |

and T can be profitably interpreted as expressing some form of
obligation and permission, respectively (see Section 5).
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Figure 2: Possible Interpretations of Preferences

is not valid. This has implications for the manner in which
an agent should derive its actual preferences in a given
situation, as we describe in the next section.

The most important feature is that preferences are condi-
tional and can vary with context. I can consistently assert
I(U|R) and I(U|R), that my agent should take an umbrella
if it’s raining, and leave it home if not. The potential goals
or subgoals U or ~U depend on context and need not be
asserted categorically. Furthermore, these conditionals are
defeasible: 1 can consistently assert that I(U') without fear
of contradicting I(U|R). Notice that these two statements
allow the conclusion I(R) to be drawn — the agent can
derive its (or my) preference for sunny weather.

This defeasibility also allows one to assert, together withthe
previous conditionals, I(U| R A D), that an umbrella is not
desired if I drive a car to work (D) instead of walking (-~ D).
Such a theory induces a partial structure like that illustrated
in Figure 2(a). As above, this entails I(—~D|R). However,
is this conclusion truly intended? On the surface, it seems
reasonable to accept all three preference statements, but
allow the assertion that I prefer to drive when it’s raining.
Yet I( D|R) contradicts these other premises.

The (intuitive) source of the inconsistency is the statement
I(U|R). If I prefer to drive when it’s raining, and prefer
not to have an umbrella when I drive, then I should not
assert that at the most ideal R-worlds, U holds. At the
most ideal R-worlds, D (hence -U) holds. Intuitively,
the preference for U given R only holds when I do not
drive; thus, I(U|R A -~ D) holds but I(U|R) does not (see
Figure 2(b)). Figure 2(a), which validates I(U|R), seems
appropriate when I prefer walking to driving, even when
it’s raining.

We notice, however, that the assertion I(U|R), I prefer an
umbrella when it’s raining, seems (potentially) appropriate
even when Figure 2(b) is the intended model. This might
be the case if I am usually unable to drive to work. Even if
I prefer to drive, I probably won’t be able to, so my stated
preference for U given R might reflect this fact. In this
case, the typical R-world is one in which ~D holds, and
hence one in which U should hold: my robot should bring
an umbrella along. Very often stated preferences do not ex-
press ideal preferences. Rather, they may incorporate into

the stated context (here, R) certain assumptions or default
conclusions (such as —D), and thus express a preference
conditioned on this extended context (R A ~D). The in-
tended assertion I(U|R A - D) is perfectly consistent with
Figure 2(b), but it may be abbreviated as I(U|R) if the
default conclusion D is understood. It is therefore crucial
to realize that linguistically stated prefereaces can be come
in different varieties. A statement I(U|R) expresses an
ideal preference: in the best possible R-worlds U is true.
Other varieties, such as those where the user has considered
the default consequences of a proposition before expressing
conditional preference, require the additional machinery we
introduce in Sections 3 and 4.5

23 Defeasible Reasoning with Preferences

The conditional logic of preferences we have proposed
above is similar to the (purely semantic) proposal put forth
by Hansson [17] for deontic reasoning (reasoning about
obligation and permission). In our logic, one may simply
think of I(B|A) as expressing a conditional obligation to
see to it that B holds if A does. Loewer and Belzer [22]
have criticized this semantics “since it does not contain
the resources to express actual obligations and no way of
inferring actual obligations from conditional ones.” In par-
ticular, they argue that any deontic logic should validate
something like factual detachment, not just deontic detach-
ment (the deontic analog of preferential detachment). The
criticism applies equally well to our preference logic —
one cannot logically derive actual preferences — because
the principle of factual detachment does not hold. Factual
detachment expresses the idea that if there is a conditional
preference for B given A, and A is actually the case, thea
there is an actual preference for B. While the inference is
a reasonable one, we do not expect, nor do we want it to
hold logically because it threatens the natural defeasibility
of our conditionals. For instance, if R and I(U | R) eatailed
U, sotoowould R, D, I(U|R) and I(U|RA D). Defeasible
conditional preferences could not be expressed.

Various logics have been proposed to capture factual detach-
ment in the deontic setting, and recently several complex
default reasoning schemes have been applied to this prob-
lem [18, 20]). We propose a simple solution based on the
following observation: to determine preferences based on
certain actual facts, we consider only the most ideal worlds
satisfying those facts, rather than all worlds satisfying those
facts. Let KB be a knowledge base containing statements
of conditional preference and actual facts. Given that such
facts actually obtain, the ideal situations are those most
preferred worlds satisfying KB. This suggests a straightfor-
ward mechanism for determining actual preferences. We
simply ask for those propositions a such that

|"co I (allm)

SSimilarly, one can impose this alternate interpretation on di-
rect statements of preference A <p B, as Jeffrey [19] does. On
our definition, A <p B means the best A-worlds are preferred,
whereas Jeffrey defines such a statement to mean the expected
utility of all A-worlds is greater than that for B.



Figure 3: The Compact Preference Ordering

This is precisely the preliminary scheme for conditional
default reasoning suggested in [3]. This mechanism un-
fortunately has a serious drawback: seemingly irrelevant
factual information, or information about the consequeaces
of actions, can paralyze the derivation of actual preferences.

Example Let P denote that a certain part is painted, B that
it’s blemished, and S that it’s destined for shipment to
a specific warehouse. Let D, E and F denote possible
locations for a certain piece of equipment. If

KB = {I(P|B), B}

then the actual preference P is derivable using the
scheme suggested above. However, it is not deriv-
able from KB’ = KB U {S}. Because conditionais
are defeasible, it is consistent (with XB’) to assert
I(P|B A S), although intuitively S is irrelevant to
this preference.

Again consider KB with actual preference P. Suppose
a painting action that achieves P requires the equip-
ment in question to be moved, making either D, E or
F true. Even though not stated, one can consistently
assert I(P AD|B), I(P AE|B) or I(P AF|B). Thus
the agent cannot show that any of the moves D, E or
F is tolerated — it cannot decide what to do.

In this example, the fact that I(P|B) is the only stated
preference suggests that other factors are irrelevant to the
relative preference of situations. Intuitively, these factors
should be discounted. Unless stated otherwise, the part
should be painted regardless of its destination and the man-
ner in which P is achieved (D, E or F) is not of concern.

One possible way to deal with this difficulty is to make
certain assumptions about the preference ordering. In par-
ticular, it is possible to adopt the default reasoning scheme
System Z [23] in this context. Given a set of conditional
constraints, System Z eaforces the assumption that worlds
are assumed to be as preferred as possible consistent with
these constraints. In other words, worlds are pushed down
as far as possible in the preference ordering, “gravitating”
toward absolute preference. In our example, the model
induced by this assumption is shown in Figure 3. (For
convenience we assume that I(P|B) and that D, E and
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F are mutually exclusive.) Any —~B-world that satisfies
P is deemed acceptable, regardless of the truth of the ir-
relevant factors. The technical details of System Z may
be found in [23], and in [3] we describe how the Z-model
for any conditional theory can be axiomatized in CO. The
important features of this model are: a) the assumption in-
duces a unique, “most compact” preference ordering; and
b) the consequences associated with these assumptions can
sometimes be efficiently computed.

Is the assumption that worlds are preferred unless stated
otherwise reasonable? For instance, Tan and Pearl [28]
argue that worlds shouid gravitate toward “indifference”
rather than preference. We cannot, of course, make sense
of such a suggestion in our framework, since we do not
have a bg’polar scale (where outcomes can be good, bad or
neutral).” However, even if an “assumption of indifference”
were technically feasible, we claim that the “assumption of
preference” is the the right one in our setting.

Recall that we wish to use preferences to determine the
set of goai states for a given context C. These are simply
the most preferred C-worlds according to our ranking; call
this set Pref(C). If the agent brings about any of these
situations, it will have behaved correctly. A conditional
preference I(A|C) constrains the set Pref(C) to contain
only A-worlds. Thus an agent will attempt to bring about
some A A C-world when C holds. But which A A C-
world is the right one? With no further information, System
Z will set Pref(C) = ||A A C|; all A A C-worlds will
be assumed to be equally acceptable. This seems to be
appropriate: with no further information, any course of
action that makes A true should be judged to be as good
as any other. Any other assumption, such as gravitation
of worlds toward indifference, must make the set Pref(C)
smaller than ||A A C||. For example, if we rule out worlds
satisfying o from Pref(C), then Pref(C) = [[AAC A—al|.
This requires that an agent striving for Pref(C) make —a
true as well as A. This imposes unnecessary and unjustified
restrictions on the agent’s goals, or on the manner in which
it decides to achieve them.

Notice that when worlds gravitate toward preference, our
agent becomes indifferent toward most propositions. By
maximizing the size of Pref(C) (subject to the constraint
that A be true), we minimize the number of propositions
an agent will care about or attempt to make true in context
C. In our example, if AAC if aand A A C If —a, then
T(a|C) and T(-a|C) will both be true in the Z-model.
Such indifference toward propositions in a given context
seems to be the most appropriate assumption.

In [3, 4] we characterize System Z, in a default reasonlng
context, as embodying the principle of conditional only
knowing. When certain beliefs are stated, either actual

"Note that in classical decision theory, such distinctions do not
exist. An outcome cannot be good or bad, nor can an agent be
indifferent toward an outcome, in isolation; it can only be judged
relative to other outcomes. An agent can adopt an attitude of
indifference toward a proposition, as we explain below.
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or conditional, System Z ensures that only propositions
that can be shown to be believed (in a given context) are
actually believed. We show this to be a generalization of
the notion of only knowing oftea adopted in belief logics
[21] that accounts for defeasible beliefs. In the preference
setting, System Z captures the analogous assumption of
“only preferring.” Those preferences that can be derived in
a given context C are assumed to be the only propositions
the agent prefers or cares about in that context,

Certain problems with System Z have beea shown to arise in
default reasoning. These problems occur when reasoning
about preferences as well. For example, if we have two
independent (absolute) preferences I(A) and I(B), System
Z will sanction both T(A|-~B) and T'(~A|-~B); once the
preference for B has been violated, one cannot ensure that
A s still preferred. Various modifications to System Z have
beea proposed to deal with such problems, for instance, the
“rule counting” systems of [15, 5]. Such solutions can be
applied in this setting as well, but the assumption of “only
preferring” lies at the heart of these solutions as well.

‘We should point out that, while our presentation will assume
a unique preference ordering, the definitions to follow do
not require this assumption. We are typically given a set
of conditional premises of the form I(B|A), plus other
modal sentences constraining the ordering. Unless these
premises form a “complete” theory, there will be a space of
permissible orderings. A defeasible reasoning scheme such
as System Z can be used to complete this ordering, but we
do not require the use of a single ordering — the definitions
presented below can be re-interpreted to capture truth in all
permissible orderings (i.e., consequence in QDT).

3 Default Knowledge

'We should not require that goals be based only on “certain”
beliefs in KB, but on reasonable default conclusions as well.
Consider the following prefereace ordering with atoms R (it
will rain), U (have umbrella) and C (it’scloudy). Assuming
C A Ris impossible, we have:

{CRU,CRU} < CRU < {CRU,CRU} < CRU

Suppose, furthermore, that it usually rains when its cloudy.
If KB = {C}, according to our notion of actual preference
in the last section, the agent prefers R and U — in the
best KB-world it doesn’t rain despite the clouds. However,
we cannot use factual preferences (given KB) directly to
determine goals. Ideally, the agent would like to ensure
that it doesn’t rain and that it doesn’t bring its umbrella.
However, clearly the agent can do nothing to make sure R
holds (we return to this in the next section). Given this, the
“goal” U seems to be wrong. Once C is known, the agent
should expect R and act accordingly.

As in decision theory, actions should be based not just on
preferences (utilities), but also on the likelihood (proba-
bility) of outcomes. In order to capture this intuition in a
qualitative setting, we propose a logic that has two order-

ings, one for preferences and one represeating the degree
of normality or expectation associated with a world.

The logic QDT, a step toward a qualitative decision theory,
is characterized by the class of QDT-models, of the form

M= (MSP:SNt‘P)

where W is a set of worlds (with valuation function ),
<p is a transitive, connected preference ordering on W,
and <y is a transitive, connected normality ordering on
W. We interpret w <p v as above, and take w <y v to
mean w is at least as normal a situation as v (or is at least as
expected). The submodels formed by restricting atteation
to either relation are clearly CO-models. The language of

QDT contains four modal operators: Op, O p are given the
usual truth conditions over <p; and Oy, O v are interpreted
using <n. Theconditional I( B|A) is defined as previously,

using Op, Bp. A new normative conditional connective
=> is defined in exactly the same fashion using Ox, On:

A= B =4 By-AVON(AADN(AD B)) (2)

The sentence A => B means B is true at the most normal
A-worlds, and can be viewed as a default rule. This con-
ditional is exactly that defined in [3, 7], and the associated
logic is equivalent to a number of other systems (e.g., the
qualitative probabilistic logic of [14]). QDT can be axiom-
atized using the following axioms and inference rules for

both the preference operators Op, Op and the normality
operators Oy, Oy:

K O(A > B) D (DA D OB)
K’ B(4>B)>(BA>BB)
TOADA

4 0AD0ODA

s AbBoA

H 3(oAADBB) > B(AvVB)
Nec From A infer BA.

MP From A D B and A infer B

We require the following axiom to capture their interaction:
PN BNA = BPA

Theorem 1 The logic QDT is sound and complete with
respect to the class of QDT-models.

Given a QDT-model and a (finite) set of facts KB, we de-
fine the default closure of KB to be (where Lcpr 18 our
propositional sublanguage)

Cl(KB) = {a € LcpL : KB = a}

That is, those propositions o that are normally true given
KB form the agent’s set of default conclusions. As with
preferences, we base our presentation on a unique model



determining a unique set of default conclusions. For in-
stance, System Z is one mechanism for defining a unique
normality ordering. However, as with preferences, this as-
sumption is not necessary. We assume (for simplicity of
presentation) that C/(KB) is finitely specifiable and take it
to be a singie propositional senteace.®

An agent ought to act not as if only KB were true, but aiso as
if its default beliefs CI(KB) were true. Given a model M,
as a first approximation of a definition of goal, we define an
ideal goal (wx.t. KB) to be any a € L¢p such that

M = I(a|CKKB))

The ideal goal set is the set of all such a. Intuitively, the
ideal goals are those sentences that must be true if the agent
is to find itself in a best possible situation satisfying CI(KB).
In our previous example, where KB = {C'}, we have that
CI(KB) = C A R and the agent’s goals are those sentences
entailed by C A RA U. It should be clear that ideal goals
are conditional and defeasible; for instance, given C A R,
the agent has the ideal goal U.

This formulation does not provide any indication as to what
an agent should do in order to achieve these ideal goals.
This will require the introduction of actions and ability (see
the next section). For instance, notice that the ideal goal set
is deductively closed, and we should not expect an agent to
have to consider each member of this set individually. The
notion of a sufficient condition for achieving all ideal goals
can be defined in QDT and will prove useful later.

Definition Let X be some proposition. C is a sufficient
condition given X iff C A X is satisfiable and M |=

Bp(X > Bp(Xx > -C)).

Intuitively, a sufficient condition C guarantees that an agent
is in some best possible X -world. Thus, if X is some fixed,
unchangeable context, easuring proposition C means the
agent has done the best it couid.

Proposition 2 Let C be a sufficient condition given X and
letwl=CAX. Thenv<p wonlyifv |£ X.

With respect to C{ KB), ideal goals are necessary conditions
for ensuring the best situation. A sufficient condition C for
CI(KB) guarantees the entire ideal goal set is satisfied.”

Proposition 3 If C is a sufficienst condition for CI(KB),
then M |= C A CI(KB) D a for all ideal goals a.

We will explore a detailed example in the next section. We
also examine the “priority” given to defaults over prefer-
ences implicit in this scheme, where CI(KB) is constructed
before the preference ranking is consuited.

S A sufficient condition for this property is that each “cluster” of
equally normal worlds in < corresponds to a finitely specifiable
theory. This is the case in, e.g., System Z (3].

Hector Levesque (personal communication) has suggested
that sufficiency is the crucial “operator.”
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4 Ability and Incomplete Knowledge

The definition of an ideal goal given KB embodies the idea
that an agent should attempt to achieve the best possible
situation consistent with what it knows (as well as what it
conjectures by default). However, as we have emphasized,
this is suitable only when KB is fixed. If the agent can
change the truth of certain elements in KB, ideal goals may
be too restrictive. Thus, some notion of actlon and ability
must come into play in goal derivation. Actions must also
play aroleif we are to derive what an ageat should do, rather
than simply what it should achieve. Indeed, the term “goal”
is often interpreted in this way. This is especially important
when we notice that the set of propositions an agent should
achieve will always be deductively closed. Finally, actions
must play a role in factoring out unachievable desires. For
instance, an agent might prefer that it not rain; but this is
something over which it has no control. Though it is an
ideal outcome, to call this a goal is unreasonable.

4.1 Controllable Propositions

To capture distinctions of this sort, we introduce a simple
model of actlon and ability and demonstrate its influence on
conditional goals. We ignore the complexities required to
deal with effects, preconditions and such, in order to focus
attention on the structure and interaction of ability and goal
determination.

We partition our atomic propositions into two classes: P =
CUC. Those atoms A € C are controllable, atoms over
which the agent has direct influence. The only actions
available to the agent are do(A) and do(A), which make A
true or false, forevery A € C. To keep the treatment simple,
we assume actions have no effects other than to change the
truth value of A. The atom U (have umbrella) is an example
of a controllable atom. Atoms in C are uncontrollable, for
example, R (it will raln).

Definition For any set of atomic variables P, let V(P) be
the set of truth assignments to this set. If v € V(P)
and w € V(Q) for disjoint sets P, Q, then v;w €
V(P U Q) denotes the obvious extended assignmeat.

We can now distinguish three types of propositions:

Definition A tion a is controllable iff, for every
u € V(C), there is some v € V(C) and w € V(C)
such that v; u |- a and w; u |= —a.

A proposition « is influenceable iff, for some u €
V(C), there is some v € V(C) and w € V(C) such
that v; u = a and w; u = -a.

a is uninfluenceable iff it is not influenceable.

Intuitively, since atoms in C are within complete control of
the agent, it can ensure the truth or the falsity of any con-
trollable proposition o, according to its desirability, sim-
ply by bringing about an appropriate truth assignment. If
A,B € Cthen AV B and A A B are controllable. If a
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Figure 4: User Preferences

is influenceable, we call the assignment u to C a context
for o; intuitively, should such a context hold, a can be
controlled by the agent. If A€ C, X € Cthen AV X is
influenceable but not controllable: in context X the agent
cannot do anything about the truth of A V X, but in context
X the agent can make AV X true or false through do(A) or
do(A). Note that all controllables are influenceable. In this
example, X is uninfluenceable. The category of control-
lability into which a proposition falls is easily determined
by writing it in minimal DNF. Let PI(a) denote the set of
prime implicants of a.

Proposition 4 a) a is controllable iff each clause in P1(a)
contains some literal from C and some clause contains only
literals from C. b) a is influenceable iff some literal from
C appears in PI(a). c) a is uninfluenceable iff no literal
from C appears in PI(a).

42 Complete Knowledge

Given the distinction between controllable and uncontrol-
lable propositions, we want to define goals so that an agent
is required to do only those things within its control. A
first attempt might simply be to restrict the ideal goal set as
defined above to controllable propositions. The following
example shows this to be inadequate.

Example Consider five atoms: O, it is overcast; R, it
will rain; C, I have coffee; T, I have tea; and
H, my office thermostat is set high. My robot has
the default information O => R. The robot knows
KB = {O,H,C,T}: it is overcast and the ther-
mostat is turned down. Its closure is C(KB) =
{O,R,H,C,T}. It can control the three atoms C,
T and H. Its preference ordering is designed to re-
spect my preferences: when it’s raining I prefer tea
when I arrive and the thermostat set high, otherwise
I prefer coffee and the thermostat set low. Thus, we
have the preference ordering illustrated in Figure 4.
(We assume O, R do not contribute directly to prefer-
ence, and that priority has been given to C and T over
H. We also allow the possibility that both C and T
together satisfy a preference for either.) The robot has
to decide what to do before I arrive at the office.

It should be clear that the robot should not determine its
goals by considering the ideal situations satisfying CI(KB).
In such situations, since H is known, H is true and in-
deed, it is a simple theorem of QDT that I(aja). Thus, the
robot concludes that H should be true. This is clearly mis-
taken, for considering only the best situations in which one’s
knowledge of controllables is true preveats one from deter-
mining whether changing those controllables could lead to
abetter situation. Since any controllable propositioncan be
changed if required, we do not require an agent to restrict
atteation to those situations where KB or CI(KB) is true.
The fact that H is known should not unduly influence what
are considered to be the best alternatives — H can be made
true if that is what’s best.

Of course, the goals of an agent must still be constrained by
known uninfluenceable propositions. The agent should not
reject all of its knowledge. For example, if the preference
ordering above were modified to reflect my preference for
R, the agent should not base its goals on this preference
if it knows R. Making R false is beyond its control, and
it goals should determined by restricting attention to R-
worlds. Thus we insist that the best situations satisfying
known uninfluenceable propositions be considered.

Notice that we should not ignore the truth of controllables
when making default predictions. The prior truth value of
a controllable might provide some indication of the truth
of an uncontrollable; and we must take into account these
uncontrollables when deciding which alternatives are pos-
sible, before deciding which are best. In this example, we
might imagine that the default O = R doesn’t hold, but
that O A H = R does: ifit is overcast, then the thermostat
is set high because I anticipated rain before I left last night.
Our agent must use the truth of this controllable atom H
to determine the truth of the uncontrollable R, which in
turn will influence its decisions.! Once accounted for in
forming CI(KB), H can safely be ignored.

This leads to the following formulation of goals that account
for ability. We again assume a QDT-model M and sets C,
C. The uninfluenceable belief set of an agent is

UI(KB) = {a € CI(KB) : « is uninfluenceable}

For the time being, we assume that UI(KB) is complete:
the truth value of all uncontrollable atoms is known. This
set of beliefs determines an agent’s goals.

Definition Proposition a is a complete knowledge (CK)
goaliff M |= I(a|UI(KB)) and « is controllable.

1°If a controllable provides some indication of the truth of an
uncontrollable or another controllable, (e.g., H => R) we should
think of this as an evidential rule rather than a causal rule. Given
our assumption about the independence of atoms in C, we must
take all such rules to be evidential (e.g., changing the thermostat
will not alter the chance of rain). This can be generalized using a
more reasonable conditional representation, and ultimately should
incorporate causal structure. Note the implicit temporal aspect
bere; propositions should be thought of as fluents. We can avoid
an explicit temporal representation by assuming that preference is
solely a function of the truth values of fluents.



As with ideal goals, the set of CK-goals is deductively
closed and should be viewed as a set of necessary conditions
in any rational course of action. Of course, goals can only be
affected by atomic actions, 8o we will typically be interested
in a set of actions that is guaranteed to achieve each CK-
goal. An (atomic) action set is any set of controllable
literals. If A is such a set we use it also to denote the
conjunction of its elements. An atomic goal set is any
action set A that guarantees each CK-goal; that is

M UKKB)AAD a

for each CK-goal a. Clearly, such any atomic goal set
determines a reasonable course of action. Of course, such
action sets can be determined by appeal to sufficiency.

Theorem 5 Let A be some atomic action set. Then A isa
goal set iff A is a sufficient condition for UI(KB).

In our example above, where the robot knows O, possible
atomic goal sets are {T, H} and {C, T, H}. Typically, we
will be interested in minimal goals sets, since these require
the fewest actions to achieve ideality. We may impose
other metrics and preferences on goals sets as well (e.g.,
associating costs with various actions). Notice that the
preference for tea does not prevent the robot from bringing
coffec. However, such constraints can easily be imposed
on the preference ordering. Furthermore, disjunctive goals
and “integrity constraints” pose no difficulty. If I have no
prefereace for coffee or tea, but prefer exactiy one of the
two, the generated atomic goal sets will be {C,T} and

{C,T}. The set {C,T} is not a goal set in this case.

'With defaultinformation and controllability in place, we can
briefly return to the alternative interpretation of preference
statements suggested in Section 2. The assertion “I pre-
fer an umbrella when it’s raining” can now be interpreted
as I(U|UK{R})). Together with the “pure” prefereaces
I(D|R) and I(U| D) (and other background information as
before), one can conclude R = -D.

In our goal derivation scheme, a certain priority is given
to defaults over preferences. Goals are determined by first
constructing the default consequences of KB, and then de-
ciding what to do based on this knowledge as if it were
certain. In a truly decision-theoretic setting acting on the
basis of uncertain information is a function not only of its
likelihood, but also the consequences of being incorrect.
For instance, in our framework we might have the default
rule R = S, if I run across the freeway I will cross safely.
If this allows me to arrive at my destination flve minutes
sooner than had I crossed at a crosswalk, the default as-
sumption S will ensure that I run across the freeway: I
won't (by default) get hit by a car and I will arrive sooner.
In general, the (drastic) consequences of being wrong in this
regard must be traded off against the probability of being
right. If the five minutes saved is not worth the risk, then I
decide to go to the crosswalk.

To express this tradeoff we must assume that the qualitative
scales of prefereace and normality are calibrated somehow,

. B T T T T
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and nothing in the constraints expressed by the user in our
setting allows such an assumption. In the concluding sec-
tion we discuss “qualitative” ways around this problem.
However, the scheme preseated here has a certain naive
appeal, which may be partly due to the observation that
defaults are usually expressed with such considerations in
mind [27, 25). Furthermore, the scheme is conceptually
simple in that it embodies a principle analogous to the sep-
arability of state estimation and control [11]. An ageat
can calculate what is (probably) true of the world and sub-
sequently and independently base its decisions upon these
beliefs. Finally, our scheme is applicable whea likelihood
and preference information is truly qualitative and explicit
calibration of the orderings is not feasible. We can describe
some conditions under which the assumption of separability
is appropriate.

The logic of conditional normality statements can be given
a probabilistic interpretation as described in [7]. In particu-
lar, the purely conditional fragment is equivalent to Adam’s
system of -semantics, which has also been applied to the
representation of defaults [14]. This means that there is a
probability assignment that ensures that every default rule
A=>B nds to an assertion of high conditional
probability P(B|A) > 1 — ¢, for any € > 0. Thus, we may
assume that a user chooses default rules with such a param-
eter in mind, and that P(CI(KB)|KB) > 1 — €. We can
also assume that the preference ordering is “constructed”
by clustering together worlds that have actual utility within
some reasonably small range, and treating distinct clusters
as separated by a reasonably large gap in utility. Thus, the
user can treat certain outcomes as having (more or less) in-
distinguishable utility. Outcomes in different clusters have
sufficiently differeat utilities. To analyze the appropriate-
ness of our goal derivation scheme, we make this assump-
tion precise by assigning a point utility é; to each clus-
ter in the preference ordering. Let § denote the smallest
gap 6; — é;41 between any two adjacent point utilities (the
“smallest perceptible change” in utility)and let A = 8o—6,,
denote the magnitude of the possible range in utility.

Goals (or decisions) are determined with respect to a given
KB, which induces a decision problem in the obvious fash-
ion: given UI(KB) what is an optimal action set? Let U*
denote the expected utility of an optimal action under the
assumptions above, and let EU(A) denote the expected
utility of arbitrary action set A. For any goal set A, we
want to compare EU (A) to U*. We consider a special case
first. A degenerate KB is one for which every action set
applied to UI(KB) leads to an equally desirable outcome
— UK(KB) allows no decisions to be distinguished. Since
only unlikely circumstances (that contradict default conclu-
sions) can influence the choice of actlon, our scheme cannot
generally be optimal in this case, but the error is bounded
by the probability of default violation:

Proposition 6 If KB induces a degenerate decision prob-
lem, then U* — EU(A) < €A for any goal set A.
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Degenerate problems will be rare: we imagine some differ-
entiation among decisions is possible most of the time. If
thisis the case, then we have U* — EU(A) < eA—(1-¢)é.

7 If KB is nondegenerate, any goal set A is
an optimal decision if (1 — €) > eA.

This gives some idea of the circumstances under which the
assumption of separability is sound. Of course, it is un-
reasonable to only reason with qualitative constraints that
meet these stringent requirements. But they do suggest
useful abstractions for ordinary goal derivation, and the
degree to which these conditions are approximated gives
reasonable assurance of good decisions. Thus, the separa-
bility assumption provides a computationally manageable
procedure for finding “satisficing” solutions.

43 Incomplete Knowledge

The goals described above seem reasonable, in accord with
the general maxim “do the best thing possible consistent
with your knowledge.” We dubbed such goals “CK-goals™
because they seem correct when an agent has complete
knowledge of the world (or at least of uncontrollable atoms).
But CK-goals do not always determine the best course of
action if an agent’s knowledge is incomplete. Consider the
preferences in the umbrella example and an agent with an
empty knowledge base. For all the agent knows it could rain
or not (it has no indication either way). Using CK-goals,
the agent ought to do(U), for the best situation consistent
with KB = @ is RU. Leaving its umbrella is the best choice
should it turn out not to rain; but should it rain, the agent
has ensured the worst possible outcome. It is not clear that
U should be a goal. Indeed, one might expect U to be a
goal, for no matter how R turns out, the agent has avoided
the worst outcome.

In the MEU framework, once can deal with such uncer-
tainty easily; but qualitatively, when trying to do as much
as possible with strictly ordinal value information, a dif-
ferent approach is required. The scales of preference and
normality are unknown and incomparable. It is clear, in the
presence of incomplete knowledge, that there are various
strategies for determining goais. CK-goals form merely
one alternative. Such a strategy is opportunistic, or opti-
mistic. Clearly it maximizes potential gain, for it allows
the possibility of the agent ending up with the best possi-
ble outcome. In certain domains this might be a prudent
choice (for example, where a cooperative agent determines
the outcome of uncontrollables). Of course, another strat-
egy might be the cautious strategy that minimizes potential
loss.!! This too can be captured in our logic.

Let a complete action set be any complete truth assignment
to the atoms in C. These are the alternative courses of action
available. To minimize potential loss, we must consider the

"'These alternatives are analogs of the maximax and maximin
decision criteria for decision making without outcome probabili-
ties (under strict uncertainty [13]).

worst possible outcome for each alternative, and pick those
with the “best” worst outcomes. If A;, A2 are complete
action sets, A, is as good as A; (A; < Ay)iff

M = 3p(Az A UKKB) A ~Sp(A; A UI(KB)))

Intuitively, if A; < Az then the worst worlds satisfying
A\ are at least as preferred as those satisfying A, (in the
context UI(KB)). It is not hard to see that < forms a
transitive, connected preference relation on action sets. The
best actions sets are those minlmal in this ordering <. To
determine the best action sets, however, we do not need to
compare all actlon sets in a pairwise fashion:

Theorem 8 A; isa best action set iff M |= A; < -A;.

This holds because the negation of a complete action set
(a complete conjunction of literals) is consistent with any
other complete action set. If an agent chooses other than a
best action set, it opens the possibility for a worse outcome:

Theorem 9 Let A; be a best action set for KB and A; be
any complete action set. For any w = UI(KB) A A;, there
is some v |= UI(KB) A Aj such that w <p v.

Now, we say a is a cautious goal iff
V{A;:A; isabestactionset} E a

In this way, if (say) A A B and A A —B are best action sets,
then A is a goal but B is not. Simply doing A (and letting
B run its natural course) is sufficient. This notion of goal
has controllability bullt in (ignoring tautologies). In our
example above, U is a cautious goal.

We cannot expect best action sets, in general, to be sufficient
in the same sense that CK-goal sets are. The potential for
desirable and undesirable outcomes makes it impossible to
ensure best outcomes consistent with UI(KB). However,
we can show that if there is some action set that is sufficient
for KB then all best action sets will be sufficient.

Proposition 10 If some action set A for KB is CK-sufficient
Jor KB, then every best action set is CK-sufficient.

Hence, CK-sufficiency can be applied even in the case of in-
complete knowledge. Its applicability implies that possible
outcomes of unknown uncontrollables have no influence on
preference: all relevant factors are known.

The cautious strategy seems applicable in a situation where
one expects the worst possible outcome, for example, in a
game against an adversary. Once the agent has performed
its action, it expects the worst possible outcome, so there is
no advantage to discriminating among the candidate (best)
action sets: all have equally good worst outcomes. How-
ever, it’s not clear that this is the best strategy if the outcome
of uncontrollables is essentially “random.” If outcomes are
simply determined by the natural progression of eveats,
then one should be more selective. We think of nature as
neither benevolent (a cooperative agent) or malevolent (an
adversary). Therefore, even if we decide to be cautious



(choosing among best action sets), we should account for
the fact that a worst outcome might not occur: we should
choose the actlon sets that take advantage of this fact.

Observations

It should be clear that if an agent can observe the truth
values of certain unknown propositions before it acts, it can
improve its decisions. In many cases, it will make the worst
outcomes better and change the actions chosen. To continue
the “umbrella” example, suppose R and C are unknown.
The ageat’s cautious goal is then U. If it were in the agent’s
power to determine C or C before actlng, its actions could
change. Observing C indicates the impossibility of R, and
the agent could then decide to do(U).

Space limitations preclude a deep discussion, but briefly,
we can distinguish two types of uncontrollable atoms: ob-
servables and unobservables. Suppose KB determines a
best action set Ap. Intuitively, the observation of some
unknown uncontrollable atom O is worthwhile if it can
potentially change the agent’s goal set. Cautious and op-
timistic goals must be treated differently. Assume first a
cautious strategy. Note that a goal set accounts for some
worst outcome which must include either O or O. Thus, an
observation can never be guaranteed to change the agent’s
decision: it may “validate™ its cautious approach. In our
example, observing C will not change the agent’s decision,
but observing C will. We say atom O has value if Ap is not
a best action set for one of KBU {O} or KBU {O}. In this
case, observing O is worthwhile since it might (depending
on its actual truth value) change the agent’s goal set. This is
a qualitative analog of value of information. Of course, we
cannot quantify the potential value of making an observa-
tion; but we may compare the relative values of two pieces
of information O and P. For simplicity, assume that posi-
tive observations O and P are the “improving” outcomes.
Let Ao and Ap be best actlon sets for O and P. The value
of O is as great as that of P just when

M [ Bp(ApAUKKBU{P})A-~Jp(AoAUKKBU{O})))

A similar treatment of optimistic goals can be given,
where the valuable observations are undesired outcomes
that change appropriate action. Observation O has value iff
-~I(Ap|UKKB U {0}) or ~I(Ag|UI(KB U {O}) hold.

5 Concluding Remarks

Related Work

Other attempts to define goals using preferences bear some
relationship to our system. Doyle and Wellman [12] define
goals that exhibit a conditional aspect like ours. Roughly, B
is a goal given A just when AA B is preferred to AA—B for
any fixed circumstance. For instance, if such a relationship
holds A A B should be preferred given C, given ~C, and so
on. Such goals incorporate a ceferis paribus assumption:
B is preferred to —B given A, all else being equal. This
guarantees that doing B will lead to a better situation when-
ever A holds. Our conditional goals are much weaker. No

Toward a Logic for Qualitative Decision Theory 85

such assurances can be provided. Intuitively, if B is a goal
given A, then doing B will lead to a better situation, all
else being normal. However, this permits defeasible goals,
affording greater flexibility and naturalness of expression.
Only factors directly relevant to utility need be stated, and
others are assumed to be irrelevant. In addition, our goals
incorporate elemeats of controllability.

Pearl [24] has proposed a system using much the same
underlying logical apparatus as ours. However, condi-
tional statements are taken to impose specific constraints
on utility and probability distributions, allowing expected
utility calculations (with “order of magnitude”™ values) to
be performed. While this allows stronger conclusions to
be reached in general, it makes stronger demands on the
input information as well. Thus, the system cannot be con-
strued as truly qualitative, so in a sense the aim here is
different. Tan and Pearl [28] introduce a somewhat more
qualitative system. It handles quantified condltional desires
(adopting the machinery of qualitative probability [14]). To
account for likelihood, they adopt our model of closing un-
der default consequence before consuiting preferences. In-
completely specified preferences induce a “compact” model
where worlds gravitate toward neutrality, but as noted ear-
lier, this is not an obviously useful strategy. Furthermore,
conditional preferences are given a ceteris paribus inter-
pretation along the lines of Doyle and Wellman. Aside
from the unknown impact on the computation of compact
rankings, their particular semantics is of questionable value
for representing conditional prefereaces. For example, a
preference for A given A V B requires that ~A A =B be
dispreferred. In our semantics, a conditional preference
given any o imposes no constraints on the degree of pref-
erence of —~a-worlds.

Our representation of preferences draws much from work on
deontic logic, where preference may be determined by some
legal or moral code. Indeed, our logic can be applied to such
problems [6]. However, the slogan that characterizes ideal
goals, “do the best given what you know,” is accepted in
much work on the derivation of obligations. Just as in
the derivation of goals, such a mechanism is not generally
appropriate. Some work in deontic logic has recently begun
to incorporate, as we do here, default information [20, 1].

Summary

We have presented a logic QDT for representing quali-
tative preference and likelihood information. We have
shown how defeasible conditional preferences can be ex-
pressed, and described several methods for goal derivation
based on the assumption that priority be given to defaults.
There are a number of ways in which this work can be ex-
tended. Clearly, the account of action and ability is naive.
An object-level characterization of actions with true causal
structure can be added to the conditional framework [24] to
make goal derivation more realistic.

The assumption of separability and priority of default infor-
mation must be relaxed in many circumstances. In order to
allow reasonable decisions to be made, a logic that allows
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tradeoffs of likelihood and prefereace to be expressed in a
qualitative fashion is desirable. For instance, if I instruct my
robot that it should run across the street (instead of crossing
at the crosswalk) to save three minutes while fetching my
coffee, it can safely deduce that running across the street
is worth the risk if a courier deadline is involved. I have
implicitly calibrated part of its preference and normality
rankings with each other. We are currently exploring how
such mechanisms to reason directly with such qualitative
tradeoff information [9]. This can be viewed as a mecha-
nism to deal with imperatives, and propagate the implicit
knowledge in such commands to other contexts.

Related to this is a fuller investigation of the different forms
preference information might take in such a setting. As
mentioned earlier, user preferences might be stated inde-
pendently of typicality information, or might incorporate
expected circumstances and controllability information. A
well-developed logic for these and other “entangled” con-
straints is certainly worth pursuing.
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Abstract

Models of agents that employ formal notions
of mental states are useful and often easier
to construct than models at the symbol (e.g.,
programming language) or physical (e.g., me-
chanical) level. However, to enjoy these ben-
efits, we must first supply a coherent picture
of mental-level models. What is required is
a description of the various components of
the mental level, their dynamics, their inter-
relations, and their relations with the agent’s
behavior. Only then will we have a complete
semantics for mental notions. The goal of
the first part of this paper is to provide this
picture.

The second part of this paper concentrates
specifically on belief ascription. We address
two fundamental unresolved problems. Our
mental-level model addresses the question of
grounding: where do beliefs come from, i.e.,
what links a system’s symbol or physical level
with its beliefs? Our characterization of a
class of goal-seeking agents goes towards ad-
dressing the question of adequacy: when can
we treat an entity as having beliefs? In ad-
dition, we look at general assumptions that
can help constrain the set of beliefs an agent
can be ascribed. Together, these results sup-
ply a basis for agent modelling using mental
states.

1 INTRODUCTION

Abstractions play an important role in our reasoning
ability. Arguably, the most fundamental abstraction
we use involves modelling other entities as having men-
tal states. We use it to model other biological entities
and perhaps even ourselves; it may even be used in
modelling complex mechanical entities. Indeed, Allen
Newel, in a famous paper [Newell, 1980], argues that
intelligent systems can be (approximately) described
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Faculty of Industrial Engineering and Management

Technion
Haifa 32000, Israel
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at a level higher than the symbol (e.g., programming
language) level and the physical level, which he calls
the knowledge level.

Having a mental-level model offers many advantages.
First, it allows us to describe a system’s behavior with-
out a detailed description of its lower-level, e.g., its
implementation as machine code, or its physical com-
ponents. A mental-level model is also much more ac-
cessible and intuitive to us. We can, therefore, use
it to critique a system by looking at its beliefs and
asking ourselves whether they make sense. Similarly,
we can examine a system’s goals and criticize them.
And while a model at the symbol or physical level re-
quires detailed knowledge that is often not available,
we can usually construct a mental model of an agent
by observing its behavior or by using general knowl-
edge about the typical behaviors of this agent. An un-
derstanding of the way this behavior is implemented
within this agent is not necessary, as we know from our
experience. This makes possible the task of predict-
ing an agent’s behavior without access to its program.
And as John McCarthy says [McCarthy, 1979),

(Ascription of mental states) is useful when
the ascription helps us understand the struc-
ture of the machine, its past or future behav-
ior, or how to repair and improve it. It is
perhaps never required even for humans, but
expressing reasonably briefly what is actually
known about the state of a machine ... may
require ascribing mental qualities.

In order to use this abstraction we must provide the
foundations required for modelling agents at the men-
tal level. First, we nced good models of the mental
level, i.e., its components, the way they interact, the
way they change over time, the manner in which they
determine the agent’s behavior and their relation with
the lower level descriptions of an agent. This supplies
what we call the grounding of the mental notions. Sec-
ondly, we must find criteria for determining whether
an entity can be described at this level. This is the
adegquacy problem. Having answered these questions
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we can specifically address the theoretical and practi-
cal questions of how to ascribe a mental state to an
entity, based on the available information. Typically
this information includes the observable behavior of
this entity and additional background information.

In this paper we attempt to address these problems.
We develop a formal model of the mental level, which
is motivated by work in decision theory [Luce and
Raiffa, 1957] and the work of [Rosenschein, 1985) and
[Halpern and Moses, 1990] on knowledge ascription.
The model is quite simple and intuitive. It uses a num-
ber of components: beliefs, utilities, and a decision-
strategy to construct a mental-level model. This model
relates these components among themselves and with
the agent’s behavior. It is built upon a lower-level de-
scription of the agent, which we will call the physical
level.

We start with a static model. In this model the agent
associates with each possible action a number of plau-
sible outcomes, which depend on the agent’s beliefs.
The agent assigns a utility to each outcome, repre-
senting the relative desirability of this outcome. The
agent then uses its decision strategy to choose an ac-
tion based on the utilities of this action’s outcomes.
Based on the static model we develop a more dynamic
model that also takes into account the issue of be-
lief change, and provide two interesting representa-
tion theorems. These theorems relate certain patterns
of belief change with a static representation of belief
based upon partial and total pre-orders. This model
supplies the grounding of the mental notions we use.

With this model at hand we proceed to specifically
examine the problem of belief ascription. We show a
class of goal-seeking agents that can be ascribed belief
in our framework, addressing the adequacy problem.
Unfortunately, it is often the case that we cannot as-
cribe an agent unique beliefs based on the available
information. We examine this issue and suggest two
general heuristics for choosing among multiple candi-
dates. Together these results provide a basis for agent
modelling using mental states.

1.1 A MOTIVATING EXAMPLE

To introduce the problem of belief ascription and the
motivation behind our proposed solution, we present
the following example.

Say we only care about four sets of worlds, described
by the propositions cold and rainy. Our agent, Alice,
has an accurate thermostat at home, but no windows.
In a cold Arainy world, there are two worlds Alice con-
siders possible: coldArainy and coldA-rainy. Because
in all her possible worlds cold holds, Alice knows that
it is cold. In general, to determine what Alice knows,
we construct her set of possible worlds. [Halpern and
Moses, 1990] shows us how we can construct this set
given an appropriate description of Alice.

Alice does not know that it is rainy, but does she be-
lieve that it is rainy? It seems, that to answer this
question, more information is required. So suppose
we see Alice leaving home without an umbrella. This
seems to indicate that she does not believe it is rainy,
for otherwise she would have taken an umbrella. So
based on Alice’s action we have deduced her beliefs.
However, to do so we implicitly assumed that Alice
does not like getting wet and that she had the choice
of taking an umbrella. That is, we used information
regarding Alice’s desires and possible choices of action.

Let’s be more precise. The following matrix describes
the outcome of Alice’s two possible actions.

" rainy —rainy ,
take umbrella || dryheavy | dryheavy,look stupid |
leave umbrella || wet light dry,light

Suppose that Alice’s preferences are described by the
following utility function:

| rainy | —rainy |
take umbrella 5 -1 |
~ leave umbrella —4 10

A belief that —rainy is the only plausible world would
adequately explain Alice’s behavior, as it will make
the choice of leaving the umbrella the preferred one.
Are other beliefs consistent with her behavior? Well,
she could not believe rainy to be the only plausible
world, for then she would have taken the umbrella.
Could she consider both worlds plausible? The answer
depends on her decision criterion. If she prefers to be
on the safe side, employing a mazimin strategy, which
attempts to maximize the worst case outcome, then
had she believed both worlds to be plausible, she would
have taken the umbrella (with a worst case payoff of
—1) rather than leaving it (with a worst case payoff of
—4). But if Alice follows the principle of indifference,
which takes the average payoff across plausible states,
belief in both states is consistent, since leaving the
umbrella has a better average payoff (3) than taking
it (2).

Overview The next section describes a mental-level
model based upon the notions of knowledge, belief, de-
cision criteria, and utilities. In Section 3 this model is
used to define belief ascription. As we will see, often
we cannot ascribe unique beliefs to an agent, and in
Section 4 we suggest how one can narrow the choice
of appropriate belief ascriptions. In Section 5 we add
time to the static model of Section 2, enabling us to
investigate the issue of belief change in Section 6. In
Section 7, having described a dynamic picture of the
mental level, we characterize a class of agents to which
belief can be ascribed using this model. Section 8 con-
cludes with a discussion of related work and some of
our assumptions.



2 THE FRAMEWORK

Starting with a physical level description of a sys-
tem containing a single agent and an environment, we
review knowledge ascription, following [Halpern and
Moses, 1990]. Then, we introduce a number of new
elements, beliefs, decision criteria, and utilities, and
relate them to the agent’s behavior. To make our defi-
nitions clear we will accompany them with a simplified
version of McCarthy’s famous thermostats example.

Example 1 In [McCarthy, 1979], McCarthy shows
how we often ascribe mental states to simple devices,
thermostats in that case. Our goal is to formalize this
tnformal discussion. We assume that we have a ther-
mostat in a room that controls the flow of hot water
into that room’s radiator. The thermostat can either
turn-on or shut-off the hot water supply to this radia-
tor. It chooses its action based on whether it senses the
temperature of the room to be above or below a certain
threshold value.

2.1 THE PHYSICAL LEVEL AND
KNOWLEDGE

An agent is described by a set of possible (local) states
and a set of possible actions. The agent functions
within an environment, which may also be in one of
a number of states. We refer to the state of the sys-
tem, i.e., that of both the agent and the environment
as a global state. W.l.o.g., we will assume that the
environment does not perform actions. The effects of
the agent’s actions are a (deterministic) function of its
state and the environment’s state.! This effect is de-
scribed by the transition function. Together, the agent
and the environment constitute a state machine with
two components, with transitions at each state corre-
sponding to the agent’s possible actions. It may be the
case that not all combinations of an agent’s local state
and an environment’s state are possible. Those global
states that are possible are called possible worlds.

Definition 1 An agent is a pair A = (L 4,A4),
where L 4 is the agent’s set of local states and A 4
is its set of actions. Lg is the environment’s set of
possible states. A global state is a pair (14,lg) €
Ly x Lg. The set of possible worlds is a subset
S of the set of global states L 4 x Lg. A context?
C = (1), consists of the transition function, 7 :

(LgxLg)xAg—(LgxLg)

A context specifies the environment (since Lg is im-
plicit in 7) and the effects of the agent’s actions on

1A framework in which the environment does act can be
mapped into this framework using richer state descriptions
and larger sets of states, a common practice in game theory.

2Though context is an overloaded term, its use here
seems appropriate, following [Fagin et al., 1994].
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the whole system. Later on, when we add time to the
picture it will also specify the possible starting points
of a system.

Example 1 (continued):  For our thermostat L 4 =
{—,+}. — corresponds to the case when the thermo-
stat indicates a temperature that is less than the desired
room temperature and + corresponds to a temperature
greater or equal to the desired room temperature. How-
ever, we take into account the fact that the thermo-
stat may be mistaken in its measurement of the room’s
temperature, which is indeed one of the situations Mc-
Carthy considers. The thermostat’s actions, A A, are
{turn-on, shut-off}. The environment’s states, Lg,
are {cold,ok,hot}. We do not assume any necessary
relation between the states of the thermostat and the
environment. Therefore the sel of possible worlds is
ezactly L4 x Lg. We chose the following transition
function:

|| cold | ok | hot |
turn-on || ok | hot | hot
shut-off || cold | ok | ok

In our ezample, the result of an action does not depend
on the state of the thermostat. To simplify matters
we assume that the thermostat is not affected by its
actions, although this does not matter in this ezample.

Knowledge can be ascribed to the agent using the no-
tion of a local state. An agent can distinguish between
two worlds in S if and only if its state in them, is dif-
ferent. Therefore, an agent whose local state is ! can
rule out as impossible all worlds in which his local
state would have been different, but cannot rule out
worlds in S in which his local state would have been
1. Knowledge corresponds to what holds in all worlds
the agent cannot distinguish from the actual world.

Definition 2 The set of worlds possible at [,
PW(1), is {w € S : the agent’s local state in w is l}.
The agent knows ¢ at w € S if p holds in all worlds
in PW(l), where l is its local state at w.

Example 1 (continued):  While the thermostat, by
definition, knows its local state, it knows nothing about
the room’s temperature. This stems from the fact that
in our model we allowed for the possibility of a mea-
surement error by the thermostat, making all elements
of L g x Lg possible, e.g., (—, hot) is a possible world.

If truth assignments (for some given language) are at-
tached to each world in S and a world &' is defined to
be accessible from s whenever the agent’s local states
in s and s’ are identical, we obtain the familiar S5
Kripke structure.
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The agent’s observed, or programmed behavior is de-
scribed by the protocol.

Definition 3 A protocol for an agent A is a func-
tiomPy:Ly— Ay

Example 1 (continued):
following protocol:

Our thermostat follows the

state -
action || turn-on

+
shut-off |

2.2 THE AGENCY HYPOTHESIS

What is belief? Belief is part of an abstract description
of the agent’s state. It sums up the agent’s view of the
world, and is a basis for decision making. Therefore,
we make belief a function of the agent’s local state,
represented by a belief assignment, which assigns to
each local state a nonempty subset of the set of pos-
sible worlds. These worlds are the worlds the agent
considers plausible.

Definition 4 A belief assignment is a function, B :
L4 — 25, such that for alll: B(l) # @ and B(l) C
Pﬁ/(l).

Example 1 (continued): One possible belief assign-
ment, which would probably make the thermostat’s
designer happy, is B(—) = {—,cold} and B(+) =
{+, hot}. From now on we will ignore the agent’s local
state in the description of the global state and write,
e.g., B(+) = {hot}.

While knowledge (or PW(!)) defines what is theoret-
ically possible, belief defines what, in the eyes of the
agent, is the set of worlds that should be taken into
consideration. We remark, that (after adding interpre-
tations to each world) this approach yields a K D45
belief operator.3

However, our view is that belief really makes sense as
part of a fuller description of the agent’s mental level.
In order to describe this mental level and to relate it to
the agent’s behavior, additional notions are required.
We start with the agent’s preference order over the set
of possible states, represented by a utslity function.
This preference order embodies the agent’s desires.

Definition 5 A utility function
u:S—R.

is a function

It is well known ([von Neumann and Morgenstern,
1944]) that a utility function can represent preference

3Incidentally, this gives a relation between knowledge
and belief similar to the one proposed by Kraus and
Lehmann in [Kraus and Lehmann, 1988).

orders satisfying certain assumptions, which in this pa-
per we will accept. This means that for any two states
81,82: 8, is preferred over s; iff u(s;) > u(s3).

Example 1 (continued): The goal of our thermostat
is for the room temperature to be ok. This can be rep-
resented by a utility function which assigns 0 to global
states in which the environment’s state (i.e., the room
temperature) is hot or cold, and which assigns 1 to
those states in which the environment’s state is ok.

When the exact state of the world is known, the re-
sult of following some protocol, P, is also precisely
known. (Remember that actions have deterministic
effects). We can therefore evaluate a protocol by look-
ing at the utility of the state it would generate at the
actual world. However, due to uncertainty about the
state of the world, the agent considers a number of
states to be possible. It can then subjectively assess
P in a local state [ by a vector whose elements are the
utilities of the plausible states P generates, i.e., the
worlds generated by using P at B(l).

Definition 6 Given a context C and a belief assign-
ment, B, with an arbitrary, fized, order on the set
B(l), for every l; the perceived outcome of a proto-
col P inl is a tuple whose kth element is the utility of
the state generated by applying P in C, starting from
the kth state of B(l). *

Example 1 (continued): We can construct the follow-
ing table for the thermostats possible actions:

|| cold | ok | hot |
turn-on 1 01 0
shut-off || 0 1] 1

If the thermostat ‘knew’ the precise state of the world,
e.g., that it is cold, it would have no trouble choos-
ing the action turn-on as most preferred. When there
is uncertainty, e.g., B(l) = {cold, ok}, the thermostat
associates a perceived outcome of (1,0) with the ac-
tion turn-on, and a perceived outcome of (0,1) with
the action shut-off.

While utilities are easily compared, it is not a-priori
clear how to compare perceived outcomes, thus, how
to choose among protocols. A strategy for choice un-
der uncertainty is required, which depends on e.g., the
agent’s attitude towards risk. This strategy is repre-
sented by the decision criterion, a function taking a
set of perceived outcomes, returning the set of most
preferred among them.

Definition 7 A decision_criterion is a function
P UneN2. - U,,elﬂl (i.e. from/to sets of

*For simplicity we assume a finite number of states. In
the general case we use functions instead of tuples, elimi-
nating the need to order B(l).



equal length tuples of reals), such that for all U €
Un€N2‘ p(u) c u.

Two decision criteria we have encountered are maz-
imin, which chooses the tuples in which the worst
case outcome is maximal, and the principle of indif-
ference which prefers tuples whose average outcome is
maximal® (A fuller discussion of decision criteria ap-
pears in [Luce and Raiffa, 1957, Brafman and Tennen-
holtz, 1994]).

Returning to the example of Section 1, if Alice con-
siders two worlds plausible, rainy and -rainy, at
this order, the perceived outcome of the action take
umbrella is (5,—1), while the perceived outcome of
leave umbrella is (—4,10). If Alice uses mazimin she
prefers (5, —1), with a worst case outcome of —1, over
(—4,10), with a worst case outcome of —4. She will
therefore take the umbrella. Under the principle of
indifference, Alice prefers (—4,10), with an average
utility of 3, over (5, —1), with an average utility of 2,
and will leave the umbrella. Notice how the perceived
outcome depends on Alice’s beliefs. Had Alice believed
only -rainy to be plausible, the perceived outcome of
take umbrella would be a singleton, (—1).

We remark that decision criteria such as mazimin can
be employed with preference relations satisfying as-
sumptions weaker than those of [von Neumann and
Morgenstern, 1944].

We come to a key definition that ties all of the com-
ponents we have discussed so far.

Definition 8 The agency hypothesis: the agent
follows a protocol whose perceived outcome is most
preferred (according to the agent’s decision criterion)
among the set of perceived outcomes of all possible
protocols.®

The agency hypothesis takes the view of a rational bal-
ance among the agent’s beliefs, utilities, decision cri-
terion and behavior. It states that the agent chooses
actions whose perceived outcome is maximal according
to its decision criterion. Thus, the choice of the pro-
tocol is dependent upon B(!) and u, which define the
perceived outcome, and p, which helps choose among
the different protocols, based on their perceived out-
come. The agency hypothesis states that these com-
ponents are related via this ‘rationality’ constraint.

SWith an infinite set of tuples, mazimin and the prin-
ciple of indifference may not have a set of most preferred
tuples. This is fixed by, for example, choosing some cutoff
point.

SThe agent’s possible protocols, are implicitly defined
by the set of actions A 4 (cf. Def. 1).
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3 ASCRIBING BELIEF

We now show how belief can be ascribed according to
our framework. We will assume that we are ascrib-
ing a complete belief assignment to an agent, i.e., one
that is defined in all local states. In many applica-
tions one can only ascribe partial belief assignments,
e.g., if observations of the agent’s actions exist only in
some states. It is quite straightforward to generalize
our discussion to this case.

Belief can be ascribed once we have certain informa-
tion regarding the agent. We see this information as
putting the agent in some (extended) context, which
specifies some of the elements of the rational balance
we have just discussed. Our strategy is to look for
belief assignments confirming the agency hypothesis.
That is, beliefs that would lead an entity satisfying
the agency hypothesis to act according to the given
protocol when its utilities and decision criterion are
as given. This is a process of constraint satisfaction,
where our belief assignment is constrained by the given
extended context.

Definition 9 An extended context is a 3-tuple,
C = (1,u,p) (where, 7,u and p are as previously de-
fined). Given an extended context C, a belief assign-
ment B is consistent with A’s protocol, P 4, if it
confirms the agency hypothesis regarding A.

It is clear that this approach could be used to assign
other mental states that are part of the agency hypoth-
esis, e.g., we can ascribe goals (i.e., utilities) based on
the agent’s beliefs, decision criterion, and actions. We
have chosen to concentrate on belief assignment. (This
choice is discussed in Section 8.) The problem of belief
ascription can now be formally stated as:

In an extended context C, what belief assign-
ments are consistent with the agent’s proto-
col, if any?

Example 1 (continued): Given our knowledge of the
thermostat, what beliefs can we assign it? We know
the thermostat’s protocol and goals. We will assume
that its decision criterion simply prefers tuples that
are not dominated by another tuple. Given this, we
have the following constraints on the thermostat’s be-
liefs: B(~) D {cold} and at least one of ok or hot are
in B(+). If the thermostat’s beliefs violate these con-
straints, the perceived outcome of the action prescribed
by its protocol would be strictly less preferred than the
perceived outcome of the other action.

Example 2 A simple game The following tree de-
scribes a one-person decision problem based on a game
that appears in [Kreps and Wilson, 1989]:
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Initially the agent decides whether to choose Y or N.
IfY is chosen a payoff of 1 is oblained, otherwise the
environment chooses either y, with a payoff of 0 to the
agent, or n, with a payoff of z > 1. While game theo-
reticians are mostly concerned with how games should
be played when the environment is another rational
agent, we ask a simple question: what can we say if
we observed the agent’s first move to be N? This is
an interesting question because it is easy to construct
a two person game based on this decision problem, in
which N is not a ‘rational’ move. Such behavior, while
perhaps irrational in some sense, can still be under-
stood as rational given certain beliefs, e.g., that the
environment will play n.

The following payoff matriz describes the agent’s de-
cision problem (the different states of the world corre-
spond to the environment’s behavior if N is played):

RN

Having chosen N, if the agent’s decision crilerion is
maximin then regardless of the value of z, the agent
must believe that the environment will play n. Belief
that y is plausible is inconsistent with the agent’s be-
havior, since it would imply that Y should be chosen.

In the case of the principle of indifference, if z < 2,
N is chosen only if the agent believes only n to be
plausible. If z > 2 then a belief that both worlds are
plausible would also cause N to be preferred.

Another decision crilerion is minmax regret. The re-
gret of performing action ACT in a state s is the dif-
ference between the best that can be done in state s and
the actual payoff of ACT in s. This decision criterion
prefers actions whose mazimal regret is minimal. Here
is the ‘regret’ matriz for our decision problem:

Lyl = |
Y[ 0]z=1
N1 0

For an agent following minmax regret, if z < 2 the
agent must believe n to follow N, otherwise it may
believe either n or {n,y}.

4 CHOOSING AMONG BELIEF
ASSIGNMENTS

As we observed in the thermostat example, there are
often more than one consistent belief assignment. This
is not surprising, as we often require additional as-
sumptions to ascribe unique beliefs to agents, or we
may need some lower level, implementation dependent,
information. Dennett [Dennett, 1987] paraphrases the
Duhemian thesis in this area, saying that belief and de-
sire attribution are under-determined by the available
data.

Indeed, one way of obtaining a unique belief assign-
ment in the thermostat example would be to use a bet-
ter model. That is, by using domain specific informa-
tion. Assume, for instance, that the thermostat prefers
not to change the course of action it is pursuing, if the
result is not expected to improve its utility, i.e., if cur-
rently it is supplying hot water to the radiator then, all
other things being equal, it prefers not to change this
and shut-off the water supply. This assumption can
be incorporated into our model by adding the course
of action pursued into the state description and ap-
propriately changing the utility function to reflect the
above consideration. In that case we may be able to
limit the number of consistent belief assignments

However, there are also domain independent assump-
tions and preferences that we can make when ascribing
beliefs. These assumptions narrow down our choice,
without changing the model used. We look at two
such assumptions.

A common bias is to favor models that offer adequate
explanation of the data. This is the idea behind the
following:

Definition 10 A consistent belief assignment is
choice complete (within an eztended contezt) if for
all local states, the decision crilerion returns a unique
perceived oulcome.

Assume that in all local states no two protocols have
the exact same perceived outcome. In that case, given
a consistent choice complete belief assignment, no pro-
tocol is as preferred as the actual protocol. Thus, the
agent will not be indifferent among a number of most
preferred protocols. In this sense, a choice complete
belief assignment fully explains/justifies the agent’s
choice of action.

Example 1 (continued): We have seen that any belief
assignment for state — that includes the state cold is
consistent. There are § such possibilities. However,
only one of them, B(—) = {cold} is choice complete.
Given this belief assignment the agent must choose the
action turn-on, while given any of the other 3 belief
assignments, the agent is indifferent to the choice be-
tween turn-on and shut-off.



A different modelling bias is toward greater general-
ity. Given a number of belief assignments that explain
some behavior equally well, the preference is for those
making fewer assumptions regarding the agent’s be-
liefs. That is, belief assignments in which fewer worlds
are ruled out.

Definition 11 A belief assignment B is more gen-
eral than B' ifVl€ L4 : B'(I) C B(l) and B # B'.
Given a set of belief asssgnments, B, B € B is a most
general belief assignment (mgb) w.r.t. B if there is no
B’ € B such that B’ is more general than B.

Example 1 (continued): Any belief assignment that
is a non-empty subset of {ok, hot} is choice complete
for the state +. However, the most general choice

complete belief assignment for that state is precisely
{ok, hot}.

In the sequel we will usually assume that either the
generality bias is accepted or the combination of both
which prefers the most general in the set of consistent,
choice complete, belief assignments. As the following
lemma shows, in some sense, the latter is the best we
can do in terms of assigning beliefs that do not make
the agent’s actions arbitrary.

Lemma 1 If B is most general choice complete, the
decision criterion satisfies the sure-thing principle’,
and in local state | two protocols have the same per-
ceived outcome, then there is no choice complete belief
assignment under which their perceived outcome in |
differs.

Example 1 (continued): To summerize, we have the
following unique most general choice complete belief
assignment for the thermostat:

state || — +
belief || cold | not-cold

5 ADDING TIME

Because we assumed that the thermostat has no mem-
ory nor that the environment has some special dy-
namics, we were able to model them without explicitly
introducing time. However, time is essential for rea-
sonably modelling many situation. Indeed the added
dimension of time allows us to examine the way the
mental state of an agent changes as it obtains new
information.

We incorporate time by adding the notion of a run,
a description of a full history of the system, and the

"That is, if it chooses v out of {v,u} then it chooses
vo w out of {vo w,uo w}, where o is the concatenation
operator.
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notion of an initial global state, a state from which the
system can start out.

Definition 12 Let Go C L 4 x Lg be the set of ini-
tial (global) states. A run is a sequence of states
80,81,... such that s; € Ly x Lg, 8o € Go and
(Vk > 0) (3a € Aa) : 7(8k-1,8) = 8.2 The ex-
tended system, R, is the set of all possible runs.

Having changed from static states to runs, we must
redefined some of our basic notions.

Definition 13 The set of possible worlds, S = {s|s
is a global state appearing in ¢ run in R }. A context
i8 redefined as C = (7,Go) and an extended context
is redefined as C = (1,Go, u, p). We redefine the utility
function asu: R — R.

Applying a protocol P at a state s will generate a
unique run r whose initial state is s, where each state
of r is obtained by performing the action prescribed
by P at the previous state. This allows us to maintain
the notion of a perceived outcome because we can now
associate a utility with each protocol at each state, the
utility of the run that this protocol induces at that
state.®

One last adjustment; we defined a belief assignment as
a function B: L 4 — 25, This definition will make it
hard for us to investigate belief change, i.e., the rela-
tions between an agent’s beliefs at different states of a
run. For example, if the agent has a clock, then its lo-
cal state at two consecutive states of a run will differ,
because in each the clock’s value would be different;
consequently, the states the agent considers plausible
at these local states would be disjoint. Rather than
add additional atemporal elements, such as an explicit
language, we overcome this problem by redefining a be-
lief assignment as assigning possible runs, rather than
possible worlds, i.e., B : L 4 — R. Because runs are
atemporal object, this choice makes the fundamental
changes in an agent’s beliefs more clearly visible. '°

6 BELIEF CHANGE

With time added to our model, we must start consid-
ering how the agent’s mental state changes over time.
Belief ascription, as currently defined, allows erratic
change across local states. An extreme example would
be an agent whose local state changes from ! to !, such
that PW(l) = PW(I'), yet B(I) n B(I') = 0. Part of

®Finite runs are modelled by runs in which 3n¥m s, =
Sn4m.

?Notice the this requires extending the utility function
over suffixes of runs. This is quite straightforward given
our deterministic model of the environment.

1°The interested reader may consult [Friedman and
Halpern, 1994], where belief change is investigated from
this perspective.
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Figure 1: The change in an agent’s local state after
performing actions a and a’, respectively.

our conception of agents involves an expectation that
their beliefs should change in a ‘sensible’ way ([Al-
chourron et al., 1985]). Constraints on belief change
across states are also of immense importance if we are
to be able to predict an agent’s behavior. Having as-
cribed beliefs to the agent based on past actions we
must have such constraints to deduce the agent’s cur-
rent beliefs. Having deduced the new beliefs, we can
use them to predict the agent’s choice of action.

We will look at two patterns of belief change that
we find reasonable and prove two representation the-
orems. The theorems show that there are two ways
of viewing these restrictions, either as constraints on
new beliefs imposed by the previous beliefs and the
new information, or as requiring a general static way
of representing the agent’s beliefs. We can then incor-
porate these restrictions into our model by requiring
a belief assignment to be consistent in the static sense
of Definition 9, and to exhibit the desired pattern of
belief change. This will redefine the problem of belief
ascription for agents that can acquire new information
while acting.

In what follows we will assume that the agent has per-
fect recall, i.e., its local state contains all previous local
states. This describes agents that do not forget. How-
ever, much of the following development also makes
sense when the agent has only partial memory of past
states. Perfect recall implies that an agent’s local state
changes from one state to the next. Therefore, any two
states on the same run are distinguishable.

6.1 ADMISSIBILITY

Consider the following restriction on belief change: if
my new information does not preclude all of the runs
I previously considered plausible, I will consider plau-
sible all runs previously considered plausible, that are
consistent with this new information.

We can illustrate this using Figure 1. The agent is
initially in local state !/, where the possible runs are
u,v,w and y. Assume that B(l) = {u,w}. After per-
forming action a the agent finds itself in state /;. If the
agent’s beliefs are admissible then B(l;) = {u}. How-
ever, assume that B(l) = {u,v} and the agent arrives

at I, after performing a. Now we cannot say anything
about the agent’s beliefs at Iz, even if its beliefs are
admissible (except of course B(l;) C {w,y}).

Definition 14 A belief assignment B is

admissible,!! if for local states I,I' such that l' fol-
lows | on some run: whenever PW(I')NB(l) # @ then
B(l') = PW(I')NB(l); otherwisel' is called a revision
state and B(l') C PW(I') is otherwise not restricted.

If we were to assume that the worlds here are models
of some theory then, in syntactic terms, admissibility
corresponds to conjoining the new data with the ex-
isting beliefs, whenever this is consistent. It is closely
relgted to the probabilistic idea of conditioning our
beliefs upon new information. Most work on belief re-
vision makes additional requirements on beliefs follow-
ing inconsistent information (what we call a revision
state). We will return to this issue in the end of this
section.

We can shed additional light on this restriction by
the following representation theorem. This theorem
shows that we can either ascribe the agent beliefs that
change locally in accordance to the admissibility re-
quirement or we can ascribe the agent a more complex
static ranking structure that uniquely determines its
beliefs in each state. That is at each state | the set
B(l) is exactly the set of elements in PW(l) that are
minimal w.r.t. this ranking.

Definition 15 A well founded ranking r of a set
Q is a mapping from Q to a well ordered set O. Given
a subset Q' of Q, the elements minimal in Q' are those
that have the minimal rank, i.c., are assigned the low-
est element of O by r.

A ranking of Q associates each member of Q with the
group of other members having the same rank and
orders these groups according to the rank assigned to
them. In general one speaks of a total pre-order with
a minimal element. The elements of lower rank are
considered to be better, more preferred, or more likely.

Theorem 1 Assuming perfect recall, a belief assign-
ment B is admissible iff there is a ranking function r
(i.e., a total pre-order) on the possible runs such that
B(l) = {s € PW(l) : sis r-minimal in PW(l)}.

6.2 WEAK ADMISSIBILITY

The requirement that belief assignments be admissi-
ble may seem too strong. A weaker requirement is the
following: if my new state is consistent with a run I
believed before, I should still believe in that run’s pos-
sibility. However, unlike when my belief assignment is

1 This is not to be confused with the notion of admissi-
bility in game theory.



admissible, once I learn that a run I considered plau-
sible before is in fact impossible, I may additionally
consider plausible runs which I did not consider plau-
sible before. However, if what I learn only reaffirm my
previous beliefs, i.e., I only learn that a run I did not
believe plausible is completely impossible, my beliefs
should not change. Formally:

Definition 16 A belief assignment is weakly ad-
missible if when a local state I follows I,

1. B(I') 2 B() n PW(I").
2. If B(I) C PW(I') then B(I') = B(l)

Looking at Figure 1 again, if the agent believed in u, w
in [ and its state changes to [; then it may believe ei-
ther in u or in u, v. However, if the agent only believed
u to be plausible in I, then at !, its only consistent be-
lief is in u.

Fortunately, we can again relate the ascription of
weakly admissible beliefs to that of ascribing a static
partially ordered belief structures. Again, this struc-
ture determines the agent’s beliefs at [ by choosing the
minimal elements of PW(l) according to this struc-
ture.

Definition 17 A partial pre-order on Q is a partial
subset of Q x Q that is reflezive and transitive.

Theorem 2 The beliefs of an agent with perfect re-
call are weakly admissible iff there is a partial order
< on the set of possible runs, such that its beliefs at
1 correspond to the minimal runs in PW(l) according
to <.

Patterns of beliefs change similar to ours emerge in the
work of other researches (e.g., [Friedman and Halpern,
1994, Lamarre and Shoham, 1994]). Indeed, relations
between belief revision and belief update, and repre-
sentations using partial and total pre-orders are well
known. It was shown in [Katsuno and Mendelzon,
1991b) that any revision operator that satisfies the
AGM postulates ([Alchourron et al., 1985]) can be rep-
resented using a ranking of the set of possible states.
We require less to obtain the same representation.
The reason for this, besides our assumption of per-
fect recall, is our emphasis on belief ascription, rather
than on prescribing belief change. The need for ad-
ditional requirements arises when counter-factual rea-
soning has to be accounted for. Then, given a certain
state, all ways in which it can be revised must be ac-
counted for. On the other hand, we are not asking the
question of how the agent’s beliefs would look like if it
were to take a different action than the one prescribed
by its protocol; we only need to explain the particular
actions performed by the agent at different states.
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7 EXISTENCE - GOAL SEEKING
AGENTS

But when does a belief assignment exist? From the
point of view of modelling this question is crucial, and
Savage’s answer to it ([Savage, 1972]), provides much
of the foundation of statistics and economic modelling.
In order to model programs, machines, or humans, us-
ing the various abstract mental states investigated in
Al, it is important to recognize the conditions under
which these modelling tools can be used.

Examining Savage’s work we see that he is able to as-
cribe likelihood and utilities by imposing certain con-
sistency restrictions on the agent’s actions. We will
follow a similar path. We first restrict ourselves to
a certain class of extended contexts and then require
the agent’s protocol to satisfy two restrictions. We will
show that an agent satisfying these restrictions and op-
erating in the given class of extended contexts, can be
ascribed a unique most general choice complete belief
assignment.

The contexts we examine here are of a special kind that
is quite natural in many AI applications. Local states
are of two types, goal states and non-goal states. Runs
are finite and their utility is determined by the last
local state, i.e., 1 if it is a goal state, and 0 otherwise.
We have a distinguished action, HALT, whose utility
(or more precisely, that of its outcome) in a goal state
is 1 and 0 otherwise.

We define two rationality postulates on protocols, that
embody a notion of a goal-seeking agent. The rational
effort postulate says that the agent must halt when-
ever it is in a goal state, or when it is impossible to
reach a goal state. The rational despair postulate says
that to halt the agent must either be in the goal or be
able to show a possible world under which he can never
reach the goal. Notice that these postulates refer to
the set PW(l) describing the agent’s knowledge, rather
than to B(!) (preventing possible circularity later).

Rational Effort Postulate The protocol in a local
state [ is either HALT or weakly dominates HALT.

Rational Despair Postulate The protocol in a non-
goal local state | is HALT only if for some s € PW({)
there is no protocol that achieves the goal.

We will call an agent satisfying these postulates who
operates in the contexts described above and whose
decision criterion is consistent with weak dominance
(ie.,ifvis greferred over v/ then v’ does not weakly
dominate v!? ), a goal-seeking agent.

Theorem 3 If A is a goal secking agent then it can
be ascribed a unique most general admissible belief as-

121t u(s) be the ith element of v. We say that v' weakly
dominates v if Vi v'(1) > v(¢) and 35 v'(s) > o(s).
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signment and a unique most general choice complete
belief assignment.

Many people view rational choice as equivalent to ex-
pected utility maximization under some probability
distribution. While we find the probabilistic approach
most appropriate in many contexts, we do not share
this view (see the following discussion). Indeed, we
show that, in 0/1 utility contexts any behavior consis-
tent with expected utility maximization under some
probability distribution can be attributed belief in our
framework. Let us define a B-type agent as one whose
beliefs are represented by a (subjective) probability as-
signment, whose preferences are represented by a 0/1
utility function, and whose decision criterion is based
on expected utility maximization w.r.t these probabil-
ity and utility assignments. However, we require that
when no action has an expected utility greater than 0
then HALT is performed.

Corollary 1 An agent that can be modelled as a B-
type agent is a goal-seeking agent, and consequently,
can be viewed as a perceived outcome mazimizer, us-
ing some admissible belief assignment and a decision
criterion consistent with weak dominance.

8 DISCUSSION

To conclude we re-examine the work presented in this
paper and some related research.

8.1 RE-EXAMINING THE FRAMEWORK

The ability to model agents at the mental level is most
likely required for any form of artificial intelligence.
However, as an abstraction it is already useful for more
mundane modelling tasks. It is extremely important in
multi-agent domains, as agents must construct mod-
els of other agents, but it is also useful as a means of
describing and analyzing systems at an abstract, yet
highly intuitive, level. As such, a model of the men-
tal level should strive to be simple and intuitive. Yet,
it must also be precisely formulated with sound foun-
dations. We believe that the framework we presented
meets these criteria.

Beside presenting a model of the mental level, our work
attempts to specifically improve our understanding of
belief ascription. Belief, in our framework, represents
the agent’s subjective information on the outside world
that is utilized in decision making. We modelled beliefs
as a function of the agent’s local state, for otherwise,
the actual state of the world would affect its beliefs,
without affecting its state. We suggested two meth-
ods for narrowing the choice among candidate belief
assignments and defined a class of goal-seeking agents
that can be ascribed belief in our framework. Addi-
tional results, presented in [Brafman and Tennenholtz,
1994], provide conditions under which the criteria for

choosing among belief assignments yield a unique be-
lief assignment. Also discussed there are algorithms for
ascribing admissible and weakly-admissible beliefs and
conditions under which belief ascription is tractable.

One may ask why do we emphasize belief ascription,
when the framework supplies the basis for ascribing
utilities or a decision criterion. Ascription of these
notions is certainly important, but there are a num-
ber of reasons for our choice. Belief and knowledge
are by far the most extensively researched mental
states within Al and philosophy (e.g. [Kripke, 1963,
Katsuno and Mendelzon, 1991a, Alchourron et al.,
1985, Goldzmidt and Pearl, 1992, Boutilier, 1992, del
Val and Shoham, 1992, Lamarre and Shoham, 1994,
Friedman and Halpern, 1994]), and it is therefore im-
portant to understand where they come from and how
to ascribe them. Moreover, mental-level modelling is
often used by us to construct rough descriptive models.
It is often the case that an agent’s goals are known.
This suffices to supply rough estimates of utilities.
Knowing an agent’s decision criteria seems harder, but
we have shown that for ‘reasonable’ protocols in 0/1
utility contexts, beliefs can be ascribed based on the
trivial assumption that the agent prefers weakly dom-
inant tuples. These contexts are natural in many CS
applications. Additionally, while the plausible worlds
for an agent in different situations may be unrelated,
the decision criterion is almost constant. Observing
an agent’s decision criterion in one case seems a good
indicator of its decision criterion in other cases. Nat-
urally, in normative applications, such as analysis of
protocols, the designer can readily provide all the re-
quired information.

8.2 RELATED WORK

There has been some important research on ascribing
mental states to agents. One major research area is
plan ascription, an important task in discourse under-
standing and multi-agent systems (e.g.,[Kautz, 1990,
Konolige and Pollack, 1989, Pollack, 1990]). The
aims of the work on plan ascription is more spe-
cific than ours and plans are often ascribed based
on utterances (e.g., [Konolige and Pollack, 1989]).
More specifically, Konolige ([Konolige, 1990]) has done
some theoretical work on explanatory belief ascrip-
tion. His work looks at the question of how to ex-
plain known beliefs of an agent by ascribing this agent
additional beliefs. His work implicitly assumes a high-
level agent into whose beliefs we have some access,
usually through the utterances of that agent. He
then explains these beliefs based on other, ascribed,
beliefs. This work does not deal with the general
problem of belief ascription. Both [Konolige, 1990,
Konolige and Pollack, 1989] have a somewhat syntac-
tic flavor, due to the use of argumentation systems
and derivational models. In contrast, our framework
does not employ some of the stronger 