
Abstraction of Situation Calculus Concurrent Game Structures – Extended
Abstract∗

Yves Lespérance1 , Giuseppe De Giacomo2 , Maryam Rostamigiv3

Shakil M. Khan3

1York University, Toronto, ON, Canada
2University of Oxford, Oxford, UK

3University of Regina, Regina, SK, Canada
lesperan@eecs.yorku.ca, giuseppe.degiacomo@cs.ox.ac.uk, maryam.rostamigiv@uregina.ca,

shakil.khan@uregina.ca

Many multi-agent applications can be viewed as games
where some agents try to ensure that certain objectives hold
no matter how the environment and other agents behave.
Logics such as Alternating-Time Temporal Logic (ATL)
(Alur, Henzinger, and Kupferman 2002) have been de-
fined to specify properties of such systems and verify them
through model checking, with semantics based on concur-
rent game structures. However, as the game/system becomes
more complex, it becomes very important to use abstraction
to explain how the game evolves and do strategic reason-
ing more effectively. In this paper, we develop a general
account of abstraction for multi-agent synchronous games
based on the agent abstraction framework of (Banihashemi,
De Giacomo, and Lespérance 2017) (BDL17) and the situa-
tion calculus synchronous game structures (SCSGS) of (De
Giacomo, Lespérance, and Pearce 2016) (DLP16). To ex-
press strategic properties of abstract and concrete games,
we use a first-order variant of alternating-time µ-calculus,
µATL-FO. We show that we can exploit abstraction in veri-
fying µATL-FO properties of SCSGSs under the assumption
that agents can always execute abstract moves to completion
even if not fully controlling their outcomes. Our framework
is based on the situation calculus, which provides a first-
order representation of the state and allows us to model how
plays depend on the data/objects involved.

SCSGS. These are a special kind of situation calculus ba-
sic action theory where we have a finite set of n agents, a
finite set of move types, the possible moves of the agents,
represented by functions that may take object arguments,
and one action type tick(m1, . . . ,mn), which represents the
synchronous execution of a joint move by all the agents.
A key component is a characterization of the legal moves
available to each agent; specified using special predicate
LegalM , which is defined by statements of the following
form (one for each agent Ag i and move type Mi):

LegalM (Ag i,Mi(~x), s)
.
= ΦAgi,Mi(~x, s)

For the action tick we have the following pre-
∗The work described in this extended abstract was originally

published as (Lespérance et al. 2024). It is partially supported by
the National Science and Engineering Research Council of Canada,
by the ERC Advanced Grant WhiteMech (No. 834228), by York
University, and by the University of Regina.

condition axiom: Poss(tick(m1, . . . ,mn), s) ≡∧
i=1,...,n LegalM (Ag i,mi, s). We have successor state

axioms Dssa, specifying the effects and frame conditions of
the joint moves tick(m1, . . . ,mn) on the fluents; as usual
these are domain specific and characterize the actual game
under consideration. Finally, the initial state of the game
is axiomatized in the initial situation description DS0

as
usual, in a domain specific way.

For example, we might have a high-level SCSGSDrs
h rep-

resenting a repair shop that includes the following axioms:
LegalM (ag, repair(i), s)

.
= (ag = RR1 ∨ ag = RR2) ∧

Assigned(i, ag, s) ∧ ¬Repaired(i, s)
LegalM (ag, ship(i), s)

.
=

ag = Sh ∧Repaired(i, s) ∧ ¬Shipped(i, s)

Abstraction of SCSGS. We assume that there is a high-
level (HL) (i.e., abstract) specification represented by SC-
SGS Dh and a low-level (LL) (i.e., concrete) specifica-
tion represented by SCSGS Dl. The HL and LL theo-
ries are related by a SCSGS refinement mapping m which
is a triple 〈mm,ma,mf 〉 where mm associates each HL
move typem in Movesh to a move-determined (MD) move-
based Golog program δm defined over the LL SCSGS theory
that implements the move, i.e., mm(m(~x)) = δm(~x), ma

maps the unique HL action tickh ∈ Ah to a Golog system
program that executes the mapping of the moves involved
synchronously in parallel, i.e., ma(tick(m1, . . . ,mn)) =
sync(mm(m1), . . . ,mm(mn)), and (as in (BDL17)) mf

maps each situation-suppressed HL fluent F (~x) in Fh

to a situation-suppressed formula φF (~x) defined over the
LL theory that characterizes the concrete conditions under
which F (~x) holds in a situation, i.e., mf (F (~x)) = φF (~x).
Move-based Golog programs are Golog programs where
atomic actions are replaced by atomic moves.

E.g., a partial refinement mapping for the repair shop:
mrs(ship(i)) = (Diagnosed(i) ∧ Fixed(i)
∧¬(Packed(i) ∧DroppedOff (i)))?; pack(i); dropOff (i)

mrs(Repaired(i)) = Diagnosed(i) ∧ Fixed(i)

To be able to do strategic reasoning at the HL and then re-
fine the resulting strategies into LL ones, we need to ensure
that the mapping captures all the legal behaviors that agents
can display at the LL. To get this, we impose the following
constraint:

Constraint 1. (Proper Refinement Mapping)
For every high-level system action sequence ~α and every
agent i ∈ Agents, we have that:

Dl ∪ C |= ∀s.(Do(ma(~α), S0, s) ⊃
∀mi, s

′.(Do(sync(~(πm.m)∗,mm(mi), ~(πm.m)∗), s, s′) ⊃
∃m1, . . . ,mi−1,mi+1, . . . ,mn.
Do(ma(tick(m1, . . . ,mi−1,mi,mi+1, . . . ,mn)), s, s′)))

Thus if an agent i completes a HL move mi , there must
be HL moves m1, . . . ,mi−1,mi+1, . . . ,mn by the other
agents that capture their LL behavior. We must also ensure
that agents can only execute refinements of HL moves and
that they begin and end at the same time .
m-Bisimulation. To relate the HL and LL mod-

els/theories, we apply the definition of m-bisimulation of
(BDL17) to system primitive actions, i.e., joint moves.
A relation B ⊆ ∆Mh

S × ∆Ml

S (where ∆M
S stands for

the situation domain of M) is an m-bisimulation rela-
tion between Mh and Ml if 〈sh, sl〉 ∈ B implies that:
(i) sh 'Mh,Ml

m sl, i.e., sh and sl evaluate HL fluents
the same; (ii) for every HL primitive action type A in
Ah , if there exists s′h such that Mh, v[s/sh, s

′/s′h] |=
Poss(A(~x), s) ∧ s′ = do(A(~x), s), then there exists
s′l such that Ml, v[s/sl, s

′/s′l] |= Do(ma(A(~x)), s, s′)
and 〈s′h, s′l〉 ∈ B; and (iii) for every HL primi-
tive action type A in Ah , if there exists s′l such that
Ml, v[s/sl, s

′/s′l] |= Do(ma(A(~x)), s, s′), then there exists
s′h such that Mh, v[s/sh, s

′/s′h] |= Poss(A(~x), s) ∧ s′ =
do(A(~x), s) and 〈s′h, s′l〉 ∈ B. Mh is m-bisimilar to Ml,
written Mh ∼m Ml, iff there exists an m-bisimulation rela-
tion B between Mh and Ml such that 〈SMh

0 , SMl
0 〉 ∈ B.

Abstraction in Verifying Strategic Properties. To ex-
press properties of games, we use µATL-FO (DLP16), a first-
order variant of alternating-time µ-calculus, µATL (Alur,
Henzinger, and Kupferman 2002). We have the following
syntax for µATL-FO formulas:

Ψ← ϕ | Z | ¬Ψ | Ψ1 ∧Ψ2 | ∃x.Ψ | 〈〈G〉〉 ©Ψ | µZ.Ψ(Z)

In the above, ϕ is an arbitrary, possibly open, situation-
suppressed situation calculus uniform formula and Z is a
predicate variable of a given arity. 〈〈G〉〉 © Ψ means that
coalition G can force Ψ to hold next, i.e., there is a vector of
legal moves for the agents in G such that for all legal moves
by the other agents, Ψ holds afterwards. µZ.Ψ(Z) is the
least fixpoint construct from the µ-calculus, which denotes
the least fixpoint of the formula Ψ(Z) (we use this notation
to emphasize that Z may occur free, i.e., not quantified by
µ in Ψ). Similarly νZ.Ψ(Z), defined as ¬µZ.¬Φ[Z/¬Z]
(where we denote with Φ[Z/¬Z] the formula obtained from
Φ by substituting each occurrence of Z with ¬Z), denotes
the greatest fixpoint of Ψ(Z). We also use the usual abbre-
viations for first-order logic such as disjunction (∨) and uni-
versal quantification ∀. Moreover we denote by [[G]]© Ψ
the dual of 〈〈G〉〉 ©Ψ, i.e., [[G]]©Ψ

.
= ¬〈〈G〉〉 © ¬Ψ.

In general, implementation of a HL move is a nondeter-
ministic program and strategic reasoning by the agent and
cooperation from other agents may be required to ensure its
execution terminates. We can require that:

Constraint 2. (Agents Can Always Execute HL Moves)
For every high-level system action sequence ~α and every
agent i ∈ Agents, we have that:

Dl ∪ C |= ∀s.(Do(ma(~α), S0, s) ⊃
∀mi.(∃s′.Do(sync(~(πm.m)∗,mm(mi), ~(πm.m)∗), s, s′) ⊃
CanForce({i}, sync(~(πm.m)∗,mm(mi), ~(πm.m)∗), s)))

It then follows that for any HL joint move by a non-empty
coalition that is possibly executable at the LL, the coalition
has a strategy to execute it to termination no matter how the
agents outside the coalition behave. Note that ability to exe-
cute HL moves to termination does not mean that the agent
can control the outcome!

We can extend our mapping to map a HL µATL-FO for-
mula Ψ to a LL one ml(Ψ). This is straightforward except
for 〈〈G〉〉©Ψ: if Ψ at the next instant at the HL, thenml(Ψ)
should hold not at the next LL instant, but after the refine-
ments of the HL moves have completed. We can impose
constraints that ensure that LL joint move sequences map
back to a unique HL joint move sequence, and that we have
a LL state formula Hlc(s) that holds iff a HL joint move
sequence has just completed. Then we can define:
〈〈G〉〉 ©h Ψ

.
= 〈〈G〉〉 © (¬Hlc U (Hlc ∧Ψ))

.
= 〈〈G〉〉 © µZ.((Hlc ∧Ψ) ∨ (¬Hlc ∧ 〈〈G〉〉 © Z))

and use this to define the mapping m(Ψ) for arbitrary HL
µATL-FO formulas.

Then we can show our main result:
Theorem 3.
For any µATL-FO formula Ψ, if Mh ∼m Ml, the con-
straints hold, sh ∼Mh,Ml

m sl, and sh ∈ (Ψ)Mh

v,V , then
sl ∈ (ml(Ψ))Ml

v,V .

i.e., in m-bisimilar models, if a µATL-FO property Ψ holds
at the HL, then the mapped version ml(Ψ) must also hold at
LL in m-similar situations. Usually, the HL game structure
is much smaller than the LL one, so it is easier to verify a
property at the HL.

E.g., consider the first-order ATL∗ property stating that
the coalition of all repair shop agents C has a strat-
egy to ensure that all items that arrive are eventually
shipped 〈〈C〉〉 ∀i.�(Arrived(i) ⊃ ♦Shipped(i)), which
can be expressed in µATL-FO as ∀i.νX.(Arrived(i) ⊃
µY.Shipped(i) ∨ 〈〈C〉〉 © Y) ∧ 〈〈C〉〉 ©X. We can show
that this property, call it ΨGaFs

h , holds at the HL, i.e., S0 ∈
(ΨGaFs

h)M
rs
h . By Theorem 3, it follows that the mapped

property also holds at the LL: S0 ∈ (ml(Ψ
GaFs
h))M

rs
l .

References
Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002. Alternating-
time temporal logic. J. ACM 49(5):672–713.
Banihashemi, B.; De Giacomo, G.; and Lespérance, Y. 2017. Ab-
straction in situation calculus action theories. In AAAI, 1048–1055.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2016. Situation
calculus game structures and GDL. In ECAI, 408–416.
Lespérance, Y.; De Giacomo, G.; Rostamigiv, M.; and Khan, S. M.
2024. Abstraction of situation calculus concurrent game structures.
In AAAI, 10624–10634. AAAI Press.

