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Abstract

Recurrent Neural Cascades (RNCs) are the recurrent neural
networks with no cyclic dependencies among recurrent neu-
rons. This class of recurrent neural networks is successfully
used in practice. Besides training methods for a fixed ar-
chitecture such as backpropagation, the cascade architecture
naturally allows for constructive learning methods, where re-
current nodes are added incrementally one at a time, often
yielding smaller networks. Furthermore, acyclicity amounts
to a structural prior that even for the same number of neurons
yields a more favourable sample complexity compared to a
fully-connected architecture. A central question is whether
the advantages of the cascade architecture come at the cost
of a reduced expressivity. We provide new insights into this
question. We show that the regular languages captured by
RNCs with sign and tanh activation with positive recurrent
weights are the star-free regular languages. In order to es-
tablish our results we develop a novel framework where the
capabilities of RNCs are assessed by analysing which semi-
groups and groups a single neuron is able to implement.
A notable implication of our framework is that RNCs can
achieve the expressivity of all regular languages by introduc-
ing neurons that can implement groups.

1 Introduction
Recurrent Neural Cascades (RNCs) are the subclass of re-
current neural networks where recurrent neurons are cas-
caded. Namely, they can be layed out into a sequence so that
every neuron has access to the state of the preceding neurons
as well as to the external input; and, at the same time, it has
no dependency on the subsequent neurons. RNCs have been
successfully applied in many different areas, including in-
formation diffusion in social networks (Wang et al. 2017),
geological hazard predictions (Zhu et al. 2020), automated
image annotation (Shin et al. 2016), intention recognition
(Zhang et al. 2018), and optics (Xu et al. 2020).

RNCs offer several advantages over fully-connected re-
current networks. First, RNCs have a more favourable sam-
ple complexity, or dually better generalisation capabilities.
This comes for the reduced number of weights, half the
one of a fully-connected recurrent network, which implies
a smaller VC dimension (Koiran and Sontag 1998). Sec-
ond, the acyclic structure of the cascade architecture natu-
rally allows for so-called constructive learning techniques
(Fahlman 1990; Reed and Marks II 1999). These techniques

construct the network architecture dynamically during the
training, often yielding smaller networks, faster training and
improved generalisation. One such method is recurrent cas-
cade correlation, which builds the architecture incremen-
tally adding one recurrent neuron at a time (Fahlman 1990).
RNCs emerge naturally here from the fact that every node
does not depend on a node added later. RNCs also admit
learning methods for fixed architectures, such as backpropa-
gation through time (Werbos 1990), where only the weights
are learned. For these methods the advantage of the cascade
architecture comes from the reduced number of weights.

A central question is whether the advantages of the cas-
cade architecture come at the cost of a reduced expressivity
compared to the fully-connected architecture. The studies so
far have shown that there exist regular languages that are not
captured by RNCs with monotone activation such as tanh
(Giles et al. 1995). However, an exact characterisation of
their expressitivity is still missing. Furthermore, it is un-
clear whether the inability to capture all regular languages
is a limitation of the cascade architecture, or rather of the
considered activation functions. We continue this investiga-
tion and provide new insights into the capabilities of RNCs
to capture regular languages.

2 Main Contributions
We develop an analysis of the capabilities of RNCs estab-
lishing the following expressivity results.

1. RNCs with sign or tanh activations capture the star-free
regular languages. The expressivity result already holds
when recurrent weights are restricted to be positive.

2. RNCs with sign or tanh activations and positive recurrent
weights do not capture any regular language that is not
star-free.

3. Allowing for negative recurrent weights properly extends
the expressivity of RNCs with sign and tanh activations
beyond the star-free regular languages.

4. We show that in principle the expressivity of RNCs can
be extended gradually to all regular languages in a con-
trolled way. It suffices to identify appropriate recurrent
neurons. In particular, neurons that can implement finite
simple groups. As a first step, we show that second-order
sign and tanh neurons can implement the cyclic group of
order two.



The first two points establish an important connection be-
tween recurrent neural cascades and the star-free regular
languages. Specifically, they establish the importance of
the sign of recurrent weights, and hence isolate the subclass
RNC+ of recurrent neural cascades with positive recurrent
weights as a particularly important class. In fact, as a corol-
lary of Points 1 and 2, the regular languages recognised by
RNC+ are exactly the star-free regular languages.

As a result of our investigation we develop a novel frame-
work where recurrent neural networks are analysed through
the lens of Semigroup and Group Theory. The framework
is of independent interest, as its potential goes beyond our
current results. The framework allows for establishing the
expressivity of RNCs by analysing the capabilities of a sin-
gle neuron from the point of view of which semigroups and
groups it can implement. If a neuron can implement the
so-called flip-flop monoid, then cascades of such neurons
capture the star-free regular languages. To go beyond that,
it is sufficient to introduce neurons that implement groups.
Our framework can be readily used to analyse the expres-
sivity of RNCs with neurons that have not been considered
in this work. In particular, we introduce abstract flip-flop
and group neurons, which are the neural counterpart of the
flip-flop monoid and of any given group. To show expressiv-
ity results, it is sufficient to instantiate our abstract neurons.
Specifically in this work we show how to instantiate flip-flop
neurons with (first-order) sign and tanh, as well as a family
of grouplike neurons with second-order sign and tanh. In a
similar way, other results can be obtained by instantiating
the abstract neurons with different activation functions.

3 Significance of the Results
Our expressivity results provide a more comprehensive un-
derstanding of the expressivity of recurrent neural cascades.
Our analysis is fine-grained, and it highlights the role of dif-
ferent aspects of the architecture of a neural network such as
the role of cyclicity and the sign of recurrent weights. No-
tably, our results establish an important connection between
the subclass RNC+ and the star-free regular languages. This
makes RNC+ a strong candidate for learning temporal pat-
terns, since the star-free regular languages are a central class
that corresponds to the expressivity of many well-known
formalisms. Such formalisms include star-free regular ex-
pressions from where they take their name (Ginzburg 1968),
monadic first-order logic on finite linearly-ordered domains
(McNaughton and Papert 1971), past temporal logic (Manna
and Pnueli 1991), and linear temporal logic on finite traces
(De Giacomo and Vardi 2013). They are also the languages
recognised by counter-free automata as well as group-free
automata (Ginzburg 1968). On one hand, our result intro-
duces an opportunity of employing RNC+ for learning tar-
gets that one would describe in any of the above formalisms.
For such targets, RNCs are sufficiently expressive and, com-
pared to fully-connected recurrent neural networks, offer a
more favorable sample complexity along with a wider range
of learning algorithms. On the other hand, it places RNCs
alongside well-understood formalisms with the possibility
of establishing further connections and leveraging many ex-
isting fundamental results.

Our results establish a formal correspondence between
continuous systems such as recurrent neural networks and
discrete abstract objects such as automata, groups, and semi-
groups. Effectively they bridge recurrent neural networks
with algebraic automata theory, cf. (Ginzburg 1968), two
fields that developed independently and so far have not been
considered to have any interaction.

4 Relevance to KR
The paper is relevant for KR since it studies the expressivity
of recurrent neural networks in terms of formal languages,
establishing connections with KR formalisms such as linear
temporal logic and automata. Study of the expressivity is a
major focus of the KR community, and it applies to neural
formalisms in the same way it applies to logic-based for-
malisms. The paper employs KR methods such as automata
theory and formal language theory.
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