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Abstract

We introduce a new family of temporal logics designed to
finely balance the trade-off between expressivity and com-
plexity. Their key feature is the possibility of defining oper-
ators of a new kind that we call transformation operators.
Some of them subsume existing temporal operators, while
others are entirely novel. Of particular interest are transfor-
mation operators based on semigroups. They enable logics to
harness the richness of semigroup theory, and we show them
to yield logics capable of creating hierarchies of increasing
expressivity and complexity which are non-trivial to charac-
terise in existing logics. The result is a genuinely novel and
yet unexplored landscape of temporal logics, each of them
with the potential of matching the trade-off between expres-
sivity and complexity required by specific applications.

1 Introduction

We introduce the Transformation Logics, a new family of
temporal logics designed to finely balance the trade-off be-
tween expressivity and complexity. Their key feature is
the possibility of defining operators of a new kind that we
call transformation operators. They capture patterns over
sequences, and they can be thought of as a generalisation
of temporal operators. The subclass of transformation op-
erators based on finite semigroups is of particular interest.
Such semigroup-like operators suffice to capture all regular
languages, and remarkably they allow for creating hierar-
chies of increasing expressivity and complexity which are
non-trivial to define in existing logics. The base level of
the hierarchies is obtained using the operator defined by the
flip-flop monoid. The other levels are obtained introducing
operators based on simple groups—the building blocks of
all groups. Simple groups have been systematically classi-
fied into a finite number of families, cf. (Gorenstein, Lyons,
and Solomon 2018). The classification provides a compass
in the landscape of groups, and a roadmap in the exploration
of temporal logics, as it is made clear by our results.

Our motivation arises from the usage of temporal logics
in AL. They are used in reinforcement learning to specify
reward and dynamics functions (Icarte et al. 2018; De Gi-
acomo et al. 2020); in planning for describing temporally-
extended goals (Camacho et al. 2017; Bonassi et al. 2023);
in stream reasoning to express programs with the ability of

referring to different points of a stream of data (Beck, Dao-
Tran, and Eiter 2018; Ronca et al. 2022; Walega et al. 2023).

In the above applications, the required trade-off between
expressivity and complexity depends on the specific case at
hand. When the basic expressivity of the star-free regular
languages suffices, one can employ logics such as Past LTL
(Manna and Pnueli 1991) and LTLf (De Giacomo and Vardi
2013). In all the other cases, one needs to resort to more
expressive logics. The existing extensions of the above log-
ics have the expressivity of all regular languages, cf. ETL
(Wolper 1983) and LDLf (De Giacomo and Vardi 2013).
This is a big leap in expressivity, which may incur an un-
necessarily high computational complexity.

We show next two examples where the required expres-
sivity lies in fragments between the star-free regular lan-
guages and all regular languages. These intermediate frag-
ments can be precisely characterised in the Transformation
Logics.

Example 1. An agent is assigned a task that can be com-
pleted multiple times. We receive an update every minute
telling us whether the agent has completed the task in the
minute that has just elapsed. We need to detect whether the
agent has completed the task at least once on every past day.

The example describes a periodic pattern, which is be-
yond the star-free regular languages. It requires to count
minutes modulo 24 % 60 = 1440 in order to establish the
end of every day. This can be expressed in the Transforma-
tion Logics using a transformation operator defined by the
cyclic group Ca440; or alternatively using three transforma-
tion operators defined the cyclic groups Cs, Cs, and Cj, re-
spectively. Cyclic group operators yield an ability to capture
many useful periodic patterns. At the same time, they be-
long to the special class of solvable group operators, which
enjoys good properties such as a more favourable computa-
tional complexity compared to larger classes of operators.

The next one is an example where solvable group opera-
tors do not suffice, and we need to resort to symmetric group
operators, incurring a higher computational complexity.

Example 2. A cycling race with n participants takes place,
and we need to keep track of the live ranking. At each step
an overtake can happen, in which case it is communicated to
us in the form (i, + 1) meaning that the cyclist in position i
has overtaken the one in position © + 1. We know the initial



ranking, and we need to keep track of the live ranking.

The ranking in the example corresponds to the symmetric
group S,,, which is not solvable for n > 5. The example can
be specified in any Transformation Logic featuring a trans-
formation operator defined by the group .S,,.

2 Main Contributions

We introduce the Transformation Logics, prove a series of
expressivity and complexity results, and analyse their rela-
tionship with Past LTL.

The Transformation Logics. We introduce the Transforma-
tion Logics, providing a formal syntax and semantics. Their
main characteristic is the transformation operators. The op-
erators are very general, as we demonstrate through a series
of concrete examples. We develop a systematic approach
in defining operators, based on semigroup theory and al-
gebraic automata theory, cf. (Ginzburg 1968; Arbib 1969;
Domosi and Nehaniv 2005). We identify prime operators
that can capture all finite operators. For them, we prove a
series of expressivity and complexity results.

Expressivity results. We show there exists one operator,
defined by the flip-flop monoid, which yields the expressiv-
ity of the star-free regular languages; as one keeps adding
operators based on cyclic groups of prime order, the expres-
sivity increases, up to capturing all languages that can be
captured using solvable group operators; the expressivity of
all regular languages is reached by adding the other prime
operators, that can be defined by choosing groups from the
classification of finite simple groups, cf. (Gorenstein, Lyons,
and Solomon 2018).

Complexity results. We focus on the evaluation problem,
and we show three sets of results. First, we show any Trans-
formation Logic can be evaluated in polynomial time, when-
ever its operators can be evaluated in polynomial time. Sec-
ond, for two notable families of operators, we show that
polynomial-time evaluation is possible even when they are
represented compactly. Third, we focus on the data com-
plexity of evaluation showing that it corresponds to the three
circuit complexity classes AC” - ACC" C NC' when we
include (i) only the flip-flop operator, (ii) also cyclic opera-
tors, and (iii) all operators.

Relationship with Past LTL. We show how Past LTL for-
mulas can be easily translated into the core Transformation
Logic featuring the flip-flop operator. We also show how to
extend Past LTL with transformation operators.

3 Significance of the Results

From a theoretical point of view, the Transformation Log-
ics are a genuinely novel family of temporal logics with an
explicit connection to semigroup theory. This connection
allowed us to prove our expressivity and complexity results,
and we are confident it will allow for deriving many more
results out of the richness of semigroup theory. This line of
research has the potential to provide a broader understanding
of temporal logics in general, e.g., by identifying new fun-
damental temporal patterns defined by groups. Furthermore,

the Transformation Logics allow one to easily characterise
fragments of the regular languages beyond star-free, which
have gone nameless so far. This ease of characterisation will
favour their exploration.

From a practical point of view, the Transformation Logics
allow for matching the trade-off between expressivity and
complexity required by specific applications, in an innova-
tive way compared to existing formalisms.

4 Relevance to KR

The Transformation Logics are a valuable addition to the
existing set of temporal KR formalisms. The paper estab-
lishes a series of expressivity and complexity results which
are of immediate interest to both KR practitioners and theo-
reticians. The Transformation Logics will be an interesting
subject of study for the KR community.
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