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Introduction
Model Multiplicity (MM), also known as predictive multi-
plicity or the Rashomon Effect, refers to a scenario where
multiple, equally performing machine learning (ML) models
may be trained to solve a prediction task (Black, Raghavan,
and Barocas 2022). The literature has identified that these
models may differ greatly in their internals and might thus
produce inconsistent predictions when deployed (Breiman
2001; Marx, Calmon, and Ustun 2020).

Ensembling techniques are commonly used to deal with
MM scenarios (Black, Leino, and Fredrikson 2022; Black,
Raghavan, and Barocas 2022). An example of such a tech-
nique is naive ensembling (Black, Leino, and Fredrikson
2022), where the predictions of several models are aggre-
gated to produce a single outcome that reflects the opinion of
a majority of the models. While ensembling methods have
been shown to be effective in practice, their application to
consequential decision-making tasks raises some important
challenges. Specifically, these methods tend to ignore the
need to provide avenues for recourse to users negatively im-
pacted by the models’ outputs, which the literature typically
achieves via the provision of counterfactual explanations
(CEs) for the predictions (see (Guidotti 2022) for a recent
overview).

Dealing with MM while also taking CEs into account is
non-trivial. Standard algorithms designed to generate CEs
for single models typically fail to produce recourse recom-
mendations that are valid across equally performing mod-
els (Jiang et al. 2024b). This phenomenon may have trou-
bling implications as a lack of robustness may lead users to
question whether a CE is actually explaining the underlying
decision-making task and is not just an artefact of a (subset
of) model(s).

In this extended abstract, we summarise our recent con-
tributions in (Jiang et al. 2024a). We formally define the
problem of providing recourse under MM, and we briefly
describe the six desirable properties that we argue that the
solution should satisfy. We then introduce argumentative
ensembling, a novel technique rooted in computational argu-
mentation (see (Atkinson et al. 2017) for an overview). We
briefly demonstrate how argumentative ensembling is able
to solve the recourse problem effectively, while naturally in-
corporating user preferences over meta-evaluation aspects of
the models, like fairness, robustness, and interpretability.

Recourse under Model Multiplicity
Given a set of classification labels L, a model is a mapping
M ∶ Rn → L; we denote that M classifies an input x ∈
Rn, consisting of n features, as ℓ iff M(x) = ℓ. Then, a
counterfactual explanation (CE) for x, given M , is some c ∈
Rn∖{x} such that M(c) ≠M(x), which may be optimised
by some distance metric between the inputs.

Consider a non-empty set of modelsM={M1, . . . ,Mm}
and, for an input x, assume a set C(x)={c1, . . . ,cm} where
each ci ∈ C(x) is a CE for x, given Mi. We assume each CE
is valid on its associated model, i.e. Mi(ci) ≠ Mj(x), and
we say a CE ci is valid on model Mj iff Mj(ci) ≠Mj(x).
Our aim is to solve:

Problem: Recourse-Aware Ensembling (RAE)
Input: input x, setM of models, set C of CEs
Output: “optimal” set S ⊆M ∪ C.

To characterise optimality, we propose six desirable prop-
erties for the outputs (solutions) of ensembling methods.
Non-emptiness requires the solution satisfies S∩M ≠ ∅ and
S∩C ≠ ∅, ensuring that the RAE method returns some mod-
els and some CEs. Non-triviality states that S should contain
more than one model, such that the prediction result for x is
jointly decided by multiple models and thus more robust.
Then, S is said to satisfy model agreement if the models in-
cluded all agree on the prediction label for x, meaning no
prediction-related conflict exists. Majority vote requires that
the prediction result determined by S is the same as majority
voting when considering all models in M. Counterfactual
validity states that each of the included CEs should be valid
on each of the included models, i.e., there are no counterfac-
tual validity-related conflicts. Finally, counterfactual coher-
ence guarantees that a model is included in the solution set
iff its associated CE is also in this set . Then, we theoreti-
cally prove that two ensembling methods naturally extended
from naive ensembling do not satisfy non-emptiness, coun-
terfactual validity, and counterfactual coherence.

Argumentative Ensembling
As can be seen from the problem definition and the desirable
properties, prediction-related and CE validity-related con-
flicts are at the core of solving the RAE problem. Compu-
tational argumentation, a set of formalisms for dealing with



Figure 1: An example BAF constructed by argumentative ensem-
bling where: models’ predictions for the input x are given as su-
perscripts, e.g. M1(x) = 0 but M4(x) = 1; reciprocal supports are
represented by dual-headed green arrows labelled with + and stan-
dard (reciprocal) attacks are represented by single-headed (dual-
headed, respectively) red arrows labelled with −.

conflicting information (Atkinson et al. 2017), is therefore
identified as the ideal tool for obtaining the optimal solution
sets. We propose a novel argumentative ensembling method
to solve the RAE problem, which works in two steps.

First, we model the conflicts inM ∪ C in a bipolar argu-
mentation framework (BAF) (Cayrol and Lagasquie-Schiex
2005), specifying the attack and support relations between
models and models, and models and CEs, based on whether
or not there exist conflicts between them, and whether a
model is preferred over another in terms of some pre-defined
model meta-evaluation preference rules. Figure 1 shows an
example BAF for an input with five competing models un-
der MM. In this example, bi-directional supports are estab-
lished between each model and its associated CE. We then
draw attacks between each of {M1,M2,M3} and each of
{M4,M5} because these two subsets of models predict dif-
ferent labels for the input. Additionally, attacks are drawn
between CEs and models if the CE is not valid on the model.
The directions of the attacks depend on the model prefer-
ences. Here, we assume the preferences over models are
M2 ≃ M5 ≻ M3 ≻ M4 ≻ M1, where ≃ and ≻ represent is
equally preferred to and is preferred to respectively.

Then, by computing the s-preferred extension of the
BAF (Cayrol and Lagasquie-Schiex 2005), we obtain a sub-
set of M ∪ C satisfying certain argumentative properties,
which we use as the solution set of the RAE problem.
In our example (Figure 1), the solution identified by our
method is {M4,M5,c4,c5}. Though it is not the set of
models that produces the majority prediction (class 0 by
{M1,M2,M3}), it contains no CE validity-related conflicts.

We perform rigorous theoretical analyses linking our way
of formulating the BAF, the argumentative properties of an
s-preferred extension, and the desirable properties of RAE
solutions, through which we prove that our argumentative
ensembling method satisfies all the desirable properties ex-
cept for majority vote, with an additional benefit of support-
ing user preferences on models. In our experiments, we in-
stantiate RAE problems with model set sizes of {10, 20, 30}
on three datasets, and we demonstrate the superior perfor-
mances of our method over baselines extended from naive
ensembling on metrics quantifying the desirable properties.

Future Work
This paper opens up several interesting directions for future
work. First, it would be interesting to examine whether con-
sidering attacks to or from sets of arguments (e.g. (Dvorák
et al. 2022)), rather than single arguments, may help in MM.
Further, extended argumentation frameworks (Modgil 2009)
and value-based argumentation frameworks (Bench-Capon
2002) may provide useful alternative ways to account for
preferences. Moreover, in order to support experiments with
a high number of models (beyond the 30 we considered),
large-scale argumentation solvers would be highly desirable.
Finally, it would be interesting to assess the effect which
MM has on users’ evaluations of CEs.
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