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Context. Similarities play a key role in many real-world
scenarios, driving extensive research into methodologies for
measuring entity similarity and expanding sets of entities
with similar ones. Machines can nowadays deal with these
tasks by taking in some regard relevant interconnected prop-
erties shared by entities, which we term nexus of similarity.

Researchers from various fields have proposed a range of
approaches to measure the semantic similarity between en-
tities (Gomaa and Fahmy 2013). For example, modern ma-
chines are capable of computing a plausibly high similarity
score between ⟨Paris⟩ and ⟨Rome⟩, by taking into account
somehow that both of them are “European cities”, “places
situated on rivers”, “capitals”, and so on.

Inspired by “Google Sets” (Cirasella 2007), considerable
academic and commercial efforts have been also devoted to
providing solutions for expanding a given set of entities with
similar ones. The main tasks are: entity set expansion, entity
recommendation, tuples expansion, or entity suggestion. For
example, one can expand the set U = {⟨Paris⟩, ⟨Rome⟩}
and obtain U′ = U∪{⟨Amsterdam⟩}; then, one can reapply
the process starting from U′ to obtain the set U′′ = U′ ∪
{⟨Brussels⟩, ⟨Rio de Janeiro⟩, ⟨Vienna⟩}. Indeed, all these
entities share one or more of the aforementioned properties,
e.g., “European cities”, “places situated on rivers”.

Complementary approaches, ranging from DLs (Cohen,
Borgida, and Hirsh 1992) to Semantic Web (Colucci et al.
2016; Petrova et al. 2019) and Database Theory (ten Cate
et al. 2023), studied the task of recognizing and formally
expressing/explaining nexus of similarity (a.k.a. commonal-
ities) between entities within a Knowledge Base (KB).

Motivation. The above approaches vary across some key
dimensions: the form of the input, (e.g., pairs of entities,
sets of entities, sets of entity tuples); the type of KBs they
can handle, (e.g., DL-KBs, RDF documents, DBs, or even
text corpora); the portion of knowledge used to describe
the input, (e.g., the entire KB or selected excerpts); and
the specific formalism to express commonalities (e.g., DL-
Concepts, r-graphs, (U)CQs, SPARQL, rooted-CQs). Also,
commonalities may not be finitely expressible in some set-
ting, and expansions are generally viewed as “linear” (e.g.,
U ⊂ U′ ⊂ U′′), rather than “taxonomic” (e.g., U ⊂ U′

and U ⊂ U′′, where U′ and U′′ are not comparable under
subset inclusion). Thus, a unifying framework is missing.

Contribution. Amendola, Manna, and Ricioppo (2024)
proposed a general logic-based framework for character-
izing (i.e., explaining/expressing in a comprehensive way)
nexus of similarity, between entity tuples, within KBs. The
paper introduced the notion of selective KB, denoted by S =
(K, ς), to enhance any KB K (possibly beyond DL/RDF)
with a summary selector ς: basically, ς is a function that,
for any tuple τ of entities, selects a relevant portion of the
knowledge entailed by K that describes τ . Then, they de-
signed a suitable nexus explanation language, called NCF,
and equipped it with an appropriate semantics. Accordingly,
the paper defines NCF-formulas —playing the role of ex-
planations and (canonical/core) characterizations— to ex-
press nexus of similarity between tuples of entities within S,
demonstrating that these formulas always exist and are com-
putable. In particular, core characterizations are not only
comprehensive, but also concise and human understandable.
Furthermore, they introduced the expansion graph, gener-
alizing the classical notion of linear expansions. The work
also proposed and studied key reasoning tasks related to the
computation of characterizations and expansions, showing
tractability under practical assumptions.1

Framework overview. Consider the knowledge graph G0
in Figure 1. It can be naturally encoded as the dataset:

D0 = {isa(Epcot, tp), located(Epcot,Florida), . . .}.

Given an ontology O0 = {isa(x, z) ← isa(x, y), isa(y, z)},
the atoms entailed by the KB K0 = (D0, O0) are:

ent(K0) = D0 ∪ {isa(a, c) : isa(a, b), isa(b, c) ∈ D0}.

Consider now the set U0 = {⟨Discovery Cove⟩, ⟨Epcot⟩}
(referred to as an anonymous relation or a unit). To com-
prehensively express the nexus of similarity between the el-
ements of U0 and unveil its expansions, it is necessary to
establish a consensus on the relevant features describing any
entity in D0. Since such features might vary depending on
the specific application scenario, we introduce the notion of
summary selector, an algorithm that, for each e in D0, se-
lects a subset of ent(K0) ∪ {⊤(e) : e is an entity in K0},
referred to as the summary of e in the given scenario. For

1A first implementation of the framework is available, as a web
service, at https://n9.cl/6ghqj; a systematic performance evaluation
is currently underway.

https://n9.cl/6ghqj
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Figure 1: Knowledge graph G0 underlying the selective knowledge base S0 of our Example.

φ̄a 7→ {⟨Discovery Cove⟩,⟨Epcot⟩}=U0

φ̄b 7→ {⟨Pacific Park⟩} φ̄c 7→ {⟨Gardaland⟩}

φ̄d 7→ {⟨Prater⟩,⟨Leolandia⟩}

φ̄e 7→ {⟨theme park⟩}

φ̄f 7→ {⟨ξ⟩ : ξ is any other entity} φ̄f = x←⊤(x)

φ̄e = x← isa(x, ap),⊤(x),⊤(ap)

φ̄d = x← isa(x, ap), located(x, y),⊤(x),⊤(y),⊤(ap)

φ̄c = x← isa(x, tp), conj (φ̄d),⊤(tp)

φ̄b = x← isa(x, ap), located(x, y),⊤(x),⊤(y),⊤(ap),

partOf(y,US),⊤(US)

φ̄a = x← isa(x, tp), conj (φ̄e), located(x,Florida),

partOf(Florida,US),⊤(tp),⊤(Florida),⊤(US)

Figure 2: Expansion graph eg(U0,S0), where tp = theme park, ap = amusement park, and conj (φ) is the conjunction of atoms of φ.

our purposes, adopt the simple yet effective selector ς0 that
builds, for each e in D0, the dataset ς0(⟨e⟩) as the union of:
A = {p(f, g) ∈ ent(K0) : f = e},
B = {p′(f, g) ∈ ent(K0) : p(e, f) ∈ A ∧ p ̸= isa ∧ p′ ̸= isa},
C = {⊤(f) : f is an entity in A ∪B} ∪ {⊤(e)}.

For instance, the summary of ⟨Epcot⟩ is the dataset
ς0(⟨Epcot⟩) obtained by the union of:
{isa(Epcot, tp), isa(Epcot, ap), located(Epcot,Florida)},
{partOf(Florida,US)},
{⊤(Epcot),⊤(tp),⊤(ap),⊤(Florida),⊤(US)}.

We refer to the pair S0 = (K0, ς0) as a selective KB. By
examining the formula

φ̄1 = x← isa(x, ap), located(x, y), partOf(y,US)

in relation to the considered summaries, it is evi-
dent that φ̄1 explains some nexus of similarity between
⟨Discovery Cove⟩ and ⟨Epcot⟩. However, φ̄1 neglects the
additional information that both entities are also located in
Florida according to their summaries. Conversely, the for-
mula φ̄a in Figure 2 fully explains the nexus of similarity
between the two entities. Hence, we can assert that φ̄a char-
acterizes their nexus of similarity.

The last step is to classify each entity e of S0 in relation
to U0, by characterizing each unit U0 ∪ {⟨e⟩}. This leads
to the expansion graph of U0 with respect to S0, denoted by
eg(U0,S0) and depicted in Figure 2. Intuitively, each node
n1 labeled by φ1 7→ U1 says that φ1 characterizes U0 ∪
{⟨e⟩} for each ⟨e⟩ ∈ U1. If there is a path from n1 to another
node n2 labeled by φ2 7→ U2, it means that φ2 characterizes
the unit U0 ∪ U1 ∪ U2 as well. Thus, we can conclude,
for instance, that the nexus of similarity that ⟨Gardaland⟩
has with U0 incorporate those that ⟨Leolandia⟩ has with U0,

showing that Gardaland is more similar to the entities of U0

than Leolandia with respect to S. Additionally, the nexus of
similarity that ⟨Pacific Park⟩ has with U0 are incomparable
to those that ⟨Gardaland⟩ has with U0. In simple terms,
eg(U0,S0) is the expected taxonomic expansion of U0.
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