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Abstract

Efficient methods for representing and transforming quantum
states and operations are crucial for optimizing real-world
quantum circuits beyond tolerable error levels. Conversely,
quantum computing has forced us to re-examine existing
knowledge representation techniques and improve upon their
limitations. In this work, we investigate and bridge the gap
between one such technique, decision diagrams (DDs) —
originally used for representing boolean functions—, and the
stabilizer formalism, an important tool for simulating quan-
tum circuits in the tractable regime. We first show that, al-
though DDs were suggested to represent important quantum
states succinctly, they actually require exponential space for
certain stabilizer states. To remedy this, we introduce a more
powerful decision diagram variant, called Local Invertible
Map-DD (LIMDD). We prove that the set of quantum states
represented by poly-sized LIMDDs strictly contains the union
of stabilizer states and other decision diagram variants. Fi-
nally, there exist circuits which LIMDDs can efficiently sim-
ulate, while their output states cannot be succinctly repre-
sented by two state-of-the-art simulation paradigms: the sta-
bilizer decomposition techniques for Clifford + T circuits
and Matrix-Product States. By uniting two successful ap-
proaches, LIMDDs thus pave the way for fundamentally more
powerful solutions for simulation and analysis of quantum
circuits and provide a prime example of the cross-fertilization
between quantum computing and traditional knowledge rep-
resentation techniques.

Context: cross-fertilization between
knowledge representation and quantum

In the context of quantum computing, knowledge compila-
tion deals with the design of classical data structures for effi-
ciently representing and transforming quantum information
such as quantum states and circuits. Such data structures
are crucial for circuit design, studying noise resilience in the
era of Noisy Intermediate-Scale Quantum (NISQ) comput-
ers, and identifying scenarios in which a quantum computa-
tional advantage cannot be obtained. A multitude of classi-
cal knowledge representation methods have been applied to
quantum computing, with great impact on knowledge repre-
sentation, as the following examples show:
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• Decision diagrams (DDs) for representing pseudo-
Boolean functions have evolved to support complex num-
bers for representing quantum states, e.g., Algebraic De-
cision Diagram evolved into QuiDD and Edge-Valued DD
(EVDD) into Quantum Multi-Valued DD (QMDD).

• Model counting has been used for quantum circuit simu-
lation and equivalence checking, showing that quantum
circuit compilation involves #P problems that have been
handled by this community for decades, but with a twist:
negative weights representing destructive interference.

• Tensor networks and matrix product states (MPS), where
one stores the quantum state or gate (a large matrix) as
product of many smaller matrices, have been used by
quantum physicists for decades in order to solve ques-
tions in, e.g., many-body physics. Tensor networks are
applied in much the same way as DDs: representing and
manipulating relations (operations) and states.

• The stabilizer formalism efficiently simulates quantum
circuits containing only Clifford gates (a non-universal
quantum gate set) , which produce so-called ‘stabilizer
states.’ It plays a fundamental role throughout quan-
tum information, e.g., in quantum error correction and
measurement-based quantum computation.

Many applications in quantum computing and physics
thus require the (classical) representation of quantum infor-
mation. The cross-fertilization observed above is therefore a
very natural one, with many future opportunities. However,
for optimal results and to avoid re-inventing the wheel, this
process should be guided by firm insights from knowledge
representation and compilation.

In this work, we follow this approach by showing that
QMDD (and hence its predecessor Algebraic-DD) cannot
represent the crucial set of stabilizer states, prompting the
development of a new data structure, LIMDD (Vinkhuijzen
et al. 2023a), which combines the best of both worlds be-
tween DDs and the stabilizer formalism. We also map its
succinctness and tractability characteristics, showing that
LIMDD is always more succinct than other DDs, with only
polynomial runtime overhead. Finally, we show that QMDD
is subsumed by MPS in both succinctness and tractability,
but LIMDD is not.

Decision diagrams. A DD is a directed acyclic graph
(DAG) in which each path represents an amplitude (note



there can be exponentially many paths even in a DAG of
bounded degree). A succinct version of DDs are QMDDs,
which represent an n-qubit state |ϕ⟩ = α1 |0⟩ ⊗ |ϕ0⟩ +
α1 |1⟩⊗ |ϕ1⟩ as a node with two outgoing edges: a low edge
to the node for the (n − 1)-qubit (sub)state |ϕ0⟩ with la-
bel α0, and a high edge to the node for the (sub)state |ϕ1⟩
with label α1. By enforcing canonicity, i.e., that there exists
only a single unique node for each possible substate (up to
a complex factor), frequently-occurring substates only need
to be stored once. Various manipulation operations for DDs
exist which implement any quantum operation in polytime
in the DD size, enabling strong quantum-circuit simulation.
Indeed, DD-based simulation was empirically shown to be
competitive with state-of-the-art simulators; one highlight
is the QMDD-based 37-qubit simulation of Shor’s factoring
algorithm.

Contribution 1: The first decision diagram
that is succinct for stabilizer states and beyond
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Figure 1: The set of stabilizer
states and states representable as
poly-sized: (Pauli-)LIMDDs (this
work), QMDDs and MPS. Here, a
(pseudo) cluster state is a specific
family of stabilizer states (with a
non-stabilizer-state attached).

We first focus on the
capabilities of DDs
to statically store
quantum states. We
prove that QMDDs
representing cer-
tain stabilizer states,
called cluster states,
necessarily consist
of exponentially
many nodes. This
exponential sepa-
ration implies that
QMDDs and the sta-
bilizer formalism are
qualitatively distinct
in their simulation
capabilities.

Next, in order to
unite the strengths of
these two, we propose LIMDD: a new DD for quantum
computing using local invertible maps (LIMs), i.e., tensor
products of single-qubit invertible operations. Specifically:
while QMDDs represent substates that are equal up to a con-
stant factor only once, LIMDDs eliminate the need to store
multiple locally-equivalent (LIM-equivalent) states. Con-
sequently, LIMDDs are exponentially more succinct than
QMDDs: we prove that each n-qubit stabilizer state is rep-
resented by a LIMDD on O(n) nodes. A separation be-
tween LIMDDs and the stabilizer formalism is evident since
QMDDs and hence LIMDDs can store states which are not
stabilizer states. In separate work we also demonstrated that
MPS is as succinct as QMDD (Vinkhuijzen, Coopmans, and
Laarman 2024). The separations are summarized in Fig-
ure 1.

Contribution 2: separations by LIMDDs in
simulation with other state-of-the-art methods
Next, we turn our attention to simulating quantum cir-
cuits with LIMDDs. We focus on Pauli-LIMDDs, i.e.
where the LIMs are local Pauli operations. We prove that
stabilizer-state simulation can be done efficiently within
Pauli-LIMDDs by providing efficient algorithms (i.e. poly-
time in the LIMDD’s size) for computational-basis mea-
surement and the gates which generate the Clifford group:
Hadamard, phase gate, and CNOT. Furthermore, our algo-
rithms also apply to poly-size Pauli-LIMDDs which do not
represent a stabilizer state, where efficiency is retained for
measurement, phase gate and CNOT (in some cases, also
for Hadamard). We also present an algorithm for updat-
ing the Pauli-LIMDD after a general multi-qubit gate, which
has worst-case exponential runtime. The workhorse behind
LIMDDs is a novel algorithm which merges two DD nodes
when they are equivalent up to local Pauli operations.

By construction, LIMDDs are never slower slower than
QMDDs (up to overhead which scales polynomially in the
number of qubits) and in fact are sometimes exponentially
faster, as QMDDs cannot efficiently simulate Clifford cir-
cuits (stabilizer states). We empirically observed this per-
formance gain in our open-source implementation (separate,
published work (Vinkhuijzen et al. 2023b)) too: For exam-
ple, for simulating the Quantum Fourier Transform, a key
subroutine in algorithms with a strong quantum advantage
(e.g. Shor’s algorithm), LIMDDs outperform QMDDs for
more than n ≈ 19 qubits. Since, like QMDD, MPS cannot
succinctly represent all stabilizer states, LIMDDs also have
an exponential separation with MPS for simulation.

Finally, we compare LIMDDs with the extended sta-
bilizer formalism for arbitrary-circuit simulation with the
Clifford+T universal gate set, whose runtime is (expo-
nentially) fixed-parameter tractable in the number of T
gates. We achieve a (conditional) exponential separation as
LIMDDs can prepare all n-qubit Dicke states in poly(n) time
and space, while Dicke-state circuits generally require lin-
early many T gates (under the exponential time hypothesis).

In summary, LIMDDs strictly combine QMDD and sta-
bilizer formalism for quantum-circuit simulation, and have
separations with other state-of-the-art techniques. Thus,
LIMDDs not only are promising candidates for extending
the limits of the quantum-circuit analysis, but also a prime
example of the cross-fertilization between quantum comput-
ing and traditional knowledge representation approaches.
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