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The chase is a fundamental tool for the popular formalism of
existential rules, also known as tuple-generating dependen-
cies. Given a knowledge base (KB) composed of a finite set
F of facts (the database) and a set Σ of (existential) rules,
the chase repeatedly applies rules, giving rise to a sequence
F=F0, F1, F2, . . . If a fixpoint is reached after a finite num-
ber of steps (one speaks of chase termination), the obtained
structure constitutes a finite model of the given KB, which is
also universal – it maps homomorphically into every model –
allowing one to consider just this single model to answer a
wide range of queries, including conjunctive queries (CQs).

Among the different chase variants, the core chase is the
only one that terminates exactly when the KB has a finite uni-
versal model, and produces the unique smallest such model.
Thus, the core chase is the best choice for a decision proce-
dure that aims at chase termination, motivating the definition
of the fes (finite expansion sets) class containing all rule sets
Σ for which the core chase for K=(F,Σ) terminates for all
F . For such Σ, the entailment K |= Q for any CQ Q can
be decided by computing the core chase and evaluating Q
against the resulting structure.

Yet, finite universal models do not always exist. In such
cases, no chase arrives at a fixpoint. As a remedy, one may
define the “result” of the chase as the infinite union over all
the intermediate structures of the chase sequence, obtaining
an infinite structure. This will still yield a universal model
for monotonic chase variants, where Fi ⊆ Fi+1 holds for all
i. However, the core chase is non-monotonic, in which case
one cannot even be certain to obtain a model.

CQ entailment may be decidable even if there is no finite
universal model: in particular, this is the case whenever an
infinite universal model exists that is still reasonably “structu-
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Figure 1: Set diagram displaying (non-)inclusion of decidable classes of existential rule sets from the paper. We abbreviate treewidth by tw,
and restricted and core chase by rc and cc, respectively. The rulesets entitled "steepening staircase" and "inflating elevator" demonstrate that
existence of tw-finite universal models and tw-bounded core-chase sequences are independent properties. The tw-bounded cc class comes in
two flavors, referred to as uniform and recurring boundedness. The latter is more general, but the distinction is irrelevant for this overview.

rally well-behaved” by virtue of having a bounded treewidth.
This insight gave rise to many existential rule fragments of
high practical relevance, mostly based on varying notions of
guardedness, which impose syntactic restrictions ensuring
treewidth-boundedness for all chase sequences. Yet, these
classes all have in common that the existence of a treewidth-
bounded universal model can be established only via chase
variants that are necessarily monotonic: the union over all
Fi in a monotonic chase sequence is known to inherit the
treewidth bound. Regrettably, for the core chase no adequate
model-producing “aggregation” strategy is known, let alone
a treewidth-preserving one.

To overcome this issue, we provide a decidability guar-
antee, but also bring some unpleasant truths to light. We
propose a treewidth-preserving “aggregation scheme” (called
robust aggregation) for the core chase that produces a model,
but not a universal one. Still, thanks to being finitely univer-
sal (each of its finite substructures maps into every model)
the obtained model is a perfect proxy for detecting CQ entail-
ment, thus sufficient for our purpose of showing decidability.
Also, we show that the inability to construct a treewidth-
bounded universal model out of a treewidth-bounded core
chase sequence is unavoidable, by exhibiting the steepen-
ing staircase example: a uniformly treewidth-bounded core-
chase sequence for a KB whose every universal model has
infinite treewidth (Fig. 2). Conversely, the inflating elevator
example (Fig. 3) presents a KB with a universal model of
finite treewidth, yet each of its core-chase sequences consists
of structures of ever-growing treewidth (cf. Fig. 4), refuting
the plausible hypothesis that any universal model of bounded
treewidth can be obtained from a treewidth-bounded core-
chase sequence. Figure 1 summarizes our findings.



h(X,X) → ∃X ′Y Y ′.h(X,Y ) ∧ v(X,X ′) ∧ h(X ′, Y ′) ∧ v(Y, Y ′) ∧ c(Y ′)(Rh
1 )

h(X,X) ∧ v(X,X ′) ∧ h(X ′, X ′) ∧ h(X ′, Y ′) → ∃Y.c(Y ′) ∧ h(X,Y ) ∧ v(Y, Y ′)(Rh
2 )

f(X) ∧ h(X,X) ∧ h(X,Y ) → f(Y ) ∧ h(Y, Y )(Rh
3 )

h(X,X) ∧ v(X,X ′) ∧ c(X ′) → h(X ′, X ′)(Rh
4 )
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Figure 2: The steepening staircase example Kh = (Σh, F h). Left: rules of Σh, fact set F h, and a graphical representation thereof. Orange
(grey) elements represent the rule body, black elements the rule head. Visualization of atoms: denotes h (“horizontal”) and denotes
v (“vertical”); we write [×

] for c (“ceiling”) and [×
]

for f (“floor”). Right: an infinite universal model Ih of Kh (having infinite treewidth). Even
more right: infinite model Ĩh of Kh, which is not universal (note that it does not have a homomorphism to Ih) but finitely universal, i.e., it
satisfies exactly those CQs entailed by Kh. Ĩh can be obtained via robust aggregation (details not in this abstract).
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c(X) ∧ h(X,Y ) → ∃Y ′Y ′′.v(Y, Y ′) ∧ v(Y ′, Y ′′) ∧ c(Y ′′)(Rv
1)

v(X,X ′) ∧ h(X,Y ) → ∃Y ′.v(Y, Y ′) ∧ h(X ′, Y ′)(Rv
3)

d(X) ∧ f(X) ∧ v(X,X ′) → ∃Y ′.h(X ′, Y ′) ∧ f(Y ′)(Rv
2)

c(X) → d(X)(Rv
4)

v(X,X ′) ∧ d(X ′) → d(X)(Rv
5)

h(X,Y ) ∧ d(Y ) ∧ f(Y ) → f(X) ∧ v(X,X)(Rv
6)

c(X) ∧ h(X,Y ) ∧ v(Y, Y ′) ∧ f(Y ′) → h(X,Y ′)(Rv
7)
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Figure 3: The inflating elevator example Kv = (Σv, F v). Fact set F v and rules of Σv (top) and their graphical depictions (bottom). Orange
(grey) elements represent the rule body and black elements the rule head. Atoms are encoded as follows: denotes h (“horizontal”) and

denotes v (“vertical”); we write [×
] for c (“ceiling”), [×
]

for f (“floor”), and [×
] for d (“done”).
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Figure 4: Two infinite universal models of Kv (Iv having infinite treewidth and Iv∗ having a treewidth of 1), and intermediate (non-consecutive)
“snapshots” Iv1 – Iv5 of a core chase sequence for Kv, demonstrating that the treewidth grows monotonically beyond any bound.


