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Abstract

The fluted fragment is a fragment of first-order logic decid-
able for satisfiability, but which, unlike many such fragments,
imposes no restriction on the number of variables or the use of
negation. We highlight our recent results concerning the im-
pact of adding both counting quantifiers and transitivity to the
fluted fragment. The resulting formalism can be viewed as a
multi-variable, higher-arity, non-guarded extension of certain
description logics featuring number restrictions and transitive
roles, but lacking role-inverses.

Introduction and contribution
We denote the satisfiability problem for any logical language
L by Sat(L). In knowledge representation and database the-
ory an important reasoning problem is the query entailment
problem over incomplete databases enriched by ontologies
described in some logic L. This problem reduces to unsat-
isfiability of the conjunction φ ∧ ¬q, where φ describes the
ontology and q is a Boolean query. The quest for expres-
sive logics able to formalize complex ontologies, but at the
same time exhibiting acceptable computational behaviour,
has attracted attention to a number of fragments of first-order
logic, e.g. the guarded fragment, the guarded negation frag-
ment, the unary negation fragment, besides the well-known
family of description logics and various extensions of data-
log. Since, in real-life ontologies, it is natural to find prop-
erties where transitivity interacts with counting, the search
for logics with decidable (finite) query entailment allowing
such an interaction has a strong practical motivation.

We highlight our recent results concerning the impact of
adding both counting quantifiers and transitivity to the fluted
fragment. The resulting formalism can be viewed as a multi-
variable, higher-arity, non-guarded extension of certain de-
scription logics featuring number restrictions and transitive
roles, but lacking role-inverses.

The fluted fragment, or FL, originating in the work of
Quine (1969), is a fragment of first-order logic in which,
roughly speaking, the sequence of quantification of variables
coincides with the order in which those variables appear as
arguments of predicates. The fluted fragment with counting,
or FLC, is the extension of FL with the standard counting
quantifiers ∃[≤M ], ∃[≥M ] and ∃[=M ], where M is a (numeral
denoting a) positive integer. The following sentence is in
FLC:

At most three lecturers introduce a professor to
at least five students

∃[≤3]x1(lectr(x1) ∧ ∃x2(prof(x2)∧
∃[≥5]x3(std(x3) ∧ intro(x1, x2, x3)))).

(1)

In the formal definition below, logical variables are taken
from the sequence x̄ω = x1, x2, . . ., and all signatures are
purely relational, i.e., there are no individual constants or
function symbols. To establish the syntax of the fragment
FLC, the fluted fragment with counting, we first define the
sets of formulas FLC[k], for all k ≥ 0, by simultaneous
structural recursion as follows:

(i) any atom p(xℓ, . . . , xk), where xℓ, . . . , xk is a contigu-
ous subsequence of x̄ω and p a (non-equality) predi-
cate of arity k − ℓ+ 1, is in FLC[k];

(ii) FLC[k] is closed under Boolean combinations;

(iii) if φ is in FLC[k+1], then ∃xk+1 φ and ∀xk+1 φ are in
FLC[k],

(iv) if φ is in FLC[k+1] and M a non-negative integer, then
∃[≤M ]xk+1 φ, ∃[≥M ]xk+1 φ and ∃[=M ]xk+1 φ are in
FLC[k].

Define FL[k] to be the fragment of FLC[k] in which no
counting quantifiers occur: i.e. Clause (iv) is dropped. Now
let the fragment FLC be the union

⋃
k≥0 FLC[k]; similarly

let FL =
⋃

k≥0 FL[k]. By FLC+nTr, we understand the
same set of formulas as FLC, but with n distinguished bi-
nary predicates required to be interpreted as transitive rela-
tions; similarly for FL+nTr. Finally, define FLCk to be the
fragment of FLC in which at most the variables x1, . . . , xk

appear (free or bound); and similarly for FLk, FLCk+nTr
and FLk+nTr. For any logic L we write L= to denote the
extension of L in which equality is allowed.

Assuming that the arity of any predicate is fixed in ad-
vance, variables in fluted logic convey no information at all,
and therefore can be omitted, similarly to the syntax em-
ployed in description logics. For example, formula (1) can
be unambiguously reconstructed—up to a shift of variable
indices—from: ∃[≤3](lectr ∧ ∃(prof ∧ ∃[≥5](std ∧ intro))).

It was shown in (Purdy 1996) that FL has the finite model
property, whence its satisfiability problem is decidable. The



satisfiability problem for FLk is known to be in (k−2)-
NEXPTIME for k ≥ 3 (Pratt-Hartmann, Szwast, and Ten-
dera 2019). This result extends to the fragment FLC, though
with a best-known upper complexity bound of (k − 1)-
NEXPTIME for k in the same range (Pratt-Hartmann 2021).

It is impossible, within the fluted fragment, to express
the property of transitivity: in particular, the formula
∀x1∀x2

(
r(x1, x2) → ∀x3

(
r(x2, x3) → r(x1, x3)

))
is not

fluted, because the variable sequence in the atom r(x1, x3)
omits x2. The question therefore arises as to whether the
fragments FL or even FLC can be extended by declaring
certain distinguished binary predicates to be interpreted as
transitive relations. For FL, this question was largely re-
solved in (Pratt-Hartmann and Tendera 2022). It was shown
that FL=+1Tr lacks the finite model property, but has de-
cidable satisfiability and finite satisfiability problems; the
former problem, restricted to the k-variable sub-fragment
is shown to be in k-NEXPTIME, and the latter in (k+1)-
NEXPTIME. In the presence of two transitive relations but
without equality, the fluted fragment loses the finite model
property, with the decidability of satisfiability and finite sat-
isfiability both unknown. With either two transitive relations
and equality or three transitive relations, satisfiability and fi-
nite satisfiability are both undecidable. In (Pratt-Hartmann
and Tendera 2023) we consider the combination of transitiv-
ity and counting. We show that, in the absence of equality,
we may add a single transitive relation to the fragment FLC
without losing the finite model property. In the presence of
two transitive relations, however, the satisfiability and finite
satisfiability problems for FLC are undecidable, even in the
absence of equality. Table 1 presents the decidability fron-
tier of the fragments discussed above and Table 2 gives an
overview of the best known complexity bounds.

Relation to description logics
The basic description logic ALC is a notational variant
of propositional multi-modal logic. Extensions of ALC
are defined by allowing additional constructs, in particular:
number restrictions (denoted Q) corresponding to counting
quantifiers as defined in this paper, transitivity of roles (de-
noted S), role hierarchies (H) corresponding to inclusions
of binary relations, nominals (O) and role ‘inverses’ (I).
The logic SHOQ constitutes a maximal description logic
that can be embedded into FLC with transitive relations.
It is known that the free combination of number restric-
tions and transitivity leads to undecidability of concept sat-
isfiability even in the smaller logic SHQ. Indeed, it was
shown in (Kazakov, Sattler, and Zolin 2007) that just three
roles (two of them transitive) are sufficient for undecidabil-
ity. In response to these negative results, description log-
ics standardly impose the syntactic restriction that transitive
roles or their super-roles do not appear in number restric-
tions. With these restrictions, decidability is restored: con-
cept satisfiability for SHOQ is EXPTIME-complete, and for
SHOIQ it is NEXPTIME-complete (Tobies 2001). On the
other hand, there is no problem with allowing transitive rela-
tions to appear under number restrictions in description log-
ics too weak to allow these roles to interact with each other.
Thus, for example, concept satisfiability for SOQ is decid-

decidable undecidable reference

FL+1Tr FL2+3Tr (i)
FL=+1Tr FL2

=+2Tr (i)
FLC+1Tr FLC2+2Tr (ii)

? FLC=+1Tr ? open

Table 1: Decidability frontier. References: (i) Pratt-Hartmann and
Tendera 2022, (ii) Pratt-Hartmann and Tendera 2023.

L lower bound upper bound

FLk ⌊k/2⌋-NEXPTIME (k−2)-NEXPTIME

FLCk — ” — (k−1)-NEXPTIME

FLk+1Tr — ” — k-NEXPTIME
EXPSPACE (k = 2, 3)

FLCk+1Tr — ” — (k+1)-NEXPTIME

Table 2: Complexity of the satisfiability problem for the k-variable
(k ≥ 3) fragments without equality. All fragments listed in the
Table enjoy the finite model property.

able, even without any additional syntactic restrictions. In
the logic considered in (Pratt-Hartmann and Tendera 2023),
only one transitive relation is available, but it is allowed to
combine freely with other relations. We showed that this
comparative freedom is, from the point of view of decid-
ability of satisfiability, unproblematic as long as we remain
within the confines of fluted logic—in effect, provided we
have no access to role inverses.
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