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Figure 1: A simple random forest with two decision trees.

Random forests (RFs) (Breiman 2001) are machine learn-
ing models with various applications in areas like E-
commerce, Finance and Medicine. They consist of multiple
decision trees that use different subsets of the available fea-
tures. Figure 1 shows a simple RF with two decision trees.
The boolean features A,B,C are symptoms that can be ob-
served, Age is a numerical feature for the age of a patient
and the classification corresponds to a diagnosis that can be
positive or negative. Given an input, every tree makes an
individual decision and the output of the RF is obtained by
a majority vote. RFs have low risk of overfitting; support
both classification and regression tasks and come equipped
with some feature importance measures (Breiman 2001).
However, feature importance measures can be too simplis-
tic as they can represent neither joint effects of features (e.g.,
multi-drug interactions) nor non-monotonicity (e.g., increas-
ing the weight may be healthy for an underweight person,
but not for an overweight person).

In recent years, a variety of other explanation methods
has been proposed. Model-agnostic feature importance mea-
sures like LIME (Ribeiro, Singh, and Guestrin 2016), SHAP
(Lundberg and Lee 2017) and MAPLE (Plumb, Molitor,
and Talwalkar 2018) have similar limitations like the fea-
ture importance measures defined for RFs. Counterfac-
tual explanations explain how an input can be modified
to change the decision (Wachter, Mittelstadt, and Russell
2017), but mainly explain the model locally. Another in-
teresting family of explanation methods are abductive ex-
planations, also called prime implicant explanations (Shih,
Choi, and Darwiche 2018; Izza and Marques-Silva 2021;
Wäldchen et al. 2021). Roughly speaking, abductive expla-
nations are sufficient reasons for a classification. For ex-

ample, (B = 1, Age = 20) is sufficient for a positive di-
agnosis with respect to the RF in Figure 1. Recently, SAT
encodings have been applied to compute abductive expla-
nations in tree ensembles (Izza and Marques-Silva 2021;
Ignatiev et al. 2022) and many other logic-based expla-
nation approaches have been investigated for this purpose
(Marques-Silva and Ignatiev 2022; Cyras et al. 2021; Vas-
siliades, Bassiliades, and Patkos 2021).

Existing reasoning approaches for explaining RFs are
based on classical reasoning formalisms. While every in-
dividual tree in a RF can be seen as a collection of classical
Horn rules, the trees are often jointly inconsistent. There-
fore, it seems natural to investigate non-classical reasoning
formalisms to explain RFs. In (Potyka, Yin, and Toni 2023),
we studied non-monotonic and probabilistic reasoning ap-
proaches to explain RFs, namely bipolar argumentation
frameworks (BAFs) (Amgoud et al. 2008; Oren and Nor-
man 2008; Boella et al. 2010; Cayrol and Lagasquie-Schiex
2013) and Markov networks (MNs) (Koller and Friedman
2009). While explanations based on classical logic often
require a task-specific translation (e.g., for abductive expla-
nations), we showed that RFs can be directly translated into

• BAFs under bi-stable semantics (Potyka 2021) with
quadratic time and space complexity in such a way that
there is a 1-1-correspondence between inputs of the forest
and bi-stable labellings of the explanation BAF and

• MNs with linear time and space complexity in such a way
that there is a 1-1-correspondence between inputs of the
forest and the support of the MN (random variable assign-
ments with non-zero probability).

Our translations allow reducing explanation tasks like find-
ing sufficient and necessary reasons for classes and analyt-
ical tasks like computing the number of non-ambiguous in-
puts (inputs for which an unambiguous majority decision
can be made) to well studied reasoning tasks in these frame-
works. Explanations can be generated by finding sufficient
and necessary reasons in argumentation frameworks (Borg
and Bex 2021) for BAFs and by applying exact and approxi-
mate probabilistic reasoning algorithms for MNs (Koller and
Friedman 2009). MNs additionally support more general δ-
sufficient (100 · δ % of all inputs that are compatible with
the reason yield a particular class decision) and δ-necessary
reasons (100 · δ % of inputs classified in a particular way are



compatible with the reason).
We presented a probabilistic approximation scheme for

computing δ-sufficient and δ-necessary reasons (sufficient
and necessary reasons are obtained for the special case
δ = 1) and demonstrated its effectiveness on some stan-
dard benchmark datasets. In our experiments, the fraction
of non-ambiguous inputs was usually around 99%. For the
Iris dataset (classification of Iris flowers), (petallength ∈
(5.0, 5.14]) was an example of an almost sufficient rea-
son (δ ≈ 1) for the class Virginica. (sepallength ∈
(5.45, 5.5],petallength ∈ (2.64, 2.75]) was an almost suf-
ficient reason for the class Versicolor. For the Mushroom
dataset (classifications of mushrooms as poisonous or edi-
ble), Odor Foul = 0 was 0.98-necessary for Edible. Our
Python implementation is available in the Uncertainpy1 li-
brary in the folder examples/explanations/randomForests.

We believe that the connection between RFs, BAFs and
MNs is particularly interesting for KR researchers work-
ing on sufficient and necessary reasoning (explanation) and
counting (non-ambiguous inputs) in argumentation frame-
works or probabilistic inference (explanations) and comput-
ing the partition function (non-ambiguous inputs) in proba-
bilistic graphical models because the connection may allow
applying their results immediately to explaining and analyz-
ing random forests more efficiently.
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