
Automated Program Analysis:

Revisiting Precondition Inference through

Constraint Acquisition

Grégoire Menguy1, Sébastien Bardin1, Nadjib Lazaar2, and
Arnaud Gotlieb3

1Université Paris-Saclay, CEA, List, Palaiseau, France
2LIRMM, University of Montpellier, CNRS, Montpellier, France

3Simula Research Laboratory, Oslo, Norway

Reference: Menguy, G., Bardin, S., Lazaar, N., and Gotlieb, A. (2022).
Automated program analysis: Revisiting precondition inference through

constraint acquisition. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence (IJCAI-ECAI 2022), Vienna, Austria.

Link: https://www.ijcai.org/proceedings/2022/260

keywords: constraint acquisition, active learning, weakest precondition,
software engineering

We assure that this work has not already been presented to a KR audience in
a major forum.

Abstract

The following results have been published at the International
Joint Conference on Artificial Intelligence (IJCAI) 2022.

Program annotations under the form of function pre/postcon-
ditions are crucial for many software engineering and pro-
gram verification applications. Unfortunately, such annota-
tions are rarely available and must be retrofit by hand. In this
paper, we explore how Constraint Acquisition (CA), a learn-
ing framework from Constraint Programming, can be lever-
aged to automatically infer program preconditions in a black-
box manner, from input-output observations. We propose
PRECA, the first ever framework based on active constraint
acquisition dedicated to infer memory-related preconditions.
PRECA overpasses prior techniques based on program anal-
ysis and formal methods, offering well-identified guarantees
and returning more precise results in practice.

1 Introduction
Program annotations under the form of function pre/post-
conditions (Hoare 1969; Floyd 1993; Dijkstra 1968) are cru-
cial for the development of correct-by-construction systems
(Meyer 1988; Burdy et al. 2005), program refactoring (Ernst
et al. 2001). They can benefit both a human or an auto-
mated program analyzer, typically in software verification
– where they enable scalable (modular) analysis (Kirchner
et al. 2015; Godefroid, Lahiri, and Rubio-González 2011).
Unfortunately, annotations are rarely available and must be
retrofit by hand into the code, limiting their utility – espe-
cially for black-box third-party components.

Problem. Efforts have been devoted to automatically in-
fer preconditions from the code, and contract inference is
now a hot topic in Program Analysis and Formal Meth-
ods (Cousot et al. 2013; Ernst et al. 2001; Padhi, Sharma,
and Millstein 2016; Astorga et al. 2018; Gehr, Dimitrov,
and Vechev 2015). Since this problem is undecidable (as
most program analysis problems), the goal is to design
principled methods with good practical results. Yet, the
state-of-the-art is still not satisfactory. While white-box ap-
proaches leveraging standard static analysis (Hoare 1969;
Floyd 1993; Dijkstra 1968; Cousot et al. 2013) can be help-
ful, they quickly suffer from precision or scalability issues,
have a hard time dealing with complex programming fea-
tures (loops, recursion, dynamic memory) and cannot cope
with black-box components. On the other hand black-box
methods, leveraging test cases to dynamically infer (likely)
function contracts (Ernst et al. 2001; Padhi, Sharma, and
Millstein 2016; Gehr, Dimitrov, and Vechev 2015), over-
come static analysis limitations on complex codes and have
drawn attention from the software engineering community
(Zhang et al. 2014). Yet, they heavily depend on the quality
of the underlying test cases, which are often simply gen-
erated at random, given by the users (Ernst et al. 2001)
(passive learning), or automatically generated during the
learning process – but without any clear coupling between
sampling and learning (Padhi, Sharma, and Millstein 2016;
Gehr, Dimitrov, and Vechev 2015) – and so, show no clear
guarantee on the inference process.

Constraint Acquisition. Constraint programming (CP)
(Rossi, Van Beek, and Walsh 2006) has made consider-
able progress over the last forty years, becoming a power-
ful paradigm for modelling and solving combinatorial prob-
lems. However, modelling a problem as a constraint net-
work still remains a challenging task that requires exper-
tise in the field. Several constraint acquisition (CA) sys-
tems have been introduced to support the uptake of con-
straint technology by non-experts. Especially, rooted in ver-
sion space learning, CONACQ is presented in its passive and
active versions (Bessiere et al. 2017). Based on solutions
and non-solutions labelled by the user (acting as an oracle),
the system learns a set of constraints that correctly classi-
fies all examples given so far. This is an active field of
research, with many proposed extensions, for example al-
lowing partial queries (Bessiere et al. 2013). However, even
though CONACQ enjoys strong theoretical foundations, such
CA systems are hard to put in practice, as they require to
submit thousands of queries to a user. In automated pro-
gram analysis, the huge number of queries is not a problem
as long as a program plays the oracle.

Goal and contributions. In this paper, we explore the po-
tential of Constraint Acquisition for black-box precondition
inference. To the best of our knowledge, this is the first ap-
plication of CA to program analysis and our overall results
show its potential there. Our main contributions are the fol-
lowing:

• We propose PRECA, the first ever (CONACQ-like) frame-
work based on active constraint acquisition and dedicated
to infer preconditions. We show that PRECA enjoys much
better theoretical correctness properties than prior black-
box approaches. Indeed, if our learning language is ex-
pressive enough, PRECA is guaranteed to infer the weak-
est precondition;

• We describe a specialization of PRECA to the important
case of memory-related preconditions. Especially, we
propose a dedicated constraint language including mem-
ory constraints for the problem at hand (see Table 1),
as well as domain-based strategies to make the approach
more efficient in practice;

• We experimentally evaluate the benefits of our technique
on several benchmark functions. The results are summa-
rized in Table 2. They show that PRECA significantly
outperforms prior precondition learners, be it black-boxes
or white-boxes – which came as a surprise. For implicit
postconditions, with a 1h time budget, PRECA handles
92% of our dataset against 52% and 74% respectively for
black- and whitebox methods. For explicit postcondition,
PRECA infers 41% of the dataset against 23% and 34%
for other black- and white-box methods. Overall, PRECA
with 5s budget per sample performs better than prior ap-
proaches with 1h per sample.

Overall, it turns out that seeing the precondition inference
problem as a Constraint Acquisition task is beneficial, lead-
ing to good theoretical properties and beating prior tech-
niques.

2 Relevance to KR

Constraint acquisition (Bessiere et al. 2017) is a machine
learning framework that aims to infer a user’s concept as
a set of formally-defined constraints. In passive mode, the
user gives classified examples himself, while in active mode,
acquisition generates them automatically and asks the user
to classify them. Constraint acquisition enjoys clear guar-
antees (termination, soundness, completeness) and returns a
symbolic representation of the user concept. Thus, such re-
sults are easily interpretable and can be fed to other symbolic
reasoning frameworks like constraint solvers. Hence, we be-
lieve that constraint acquisition integrates perfectly into the
scope of KR.

On top of it, this paper proposes the first application of
constraint acquisition to program analysis. We show how
to adapt and extend constraint acquisition to infer function
preconditions. It removes the main limitation of constraint
acquisition: the dependency on a human user, restricting the
manageable number of queries. We replaced such a user
with an automatic oracle, removing this limitation. Our pro-
posal, PRECA, benefits from the theoretical foundations of
constraint acquisition. It offers stronger guarantees than the
state-of-the-art precondition inference methods and outper-
forms them in practice. In that sense, this paper bridges con-
straint acquisition to the active fields of code verification and
software engineering.

Grammar
P := C ⇒ A | A | ¬A
C := C ∧ C | A | ¬A
A := valid(pj) | alias(pj , pl) | deref(pj , g)

| ij = 0 | ij < 0 | ij ≤ 0 | ij = il | ij < il | ij ≤ il
Semantics of constraint over pointers

valid(pj) ≡ pj ̸= NULL
alias(pj , pl) ≡ pj = pl
deref(pj , g) ≡ pj = &g where &g is the address of g
pj (resp. ij) are pointers (resp. integers) and g is a global variable.

Table 1: Grammar of constraint language Γ

1s 5s 5 mins 1h

#WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ #WP⊤ #WPQ

Daikon 1.4/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44 1.6/50 0.4/44↰

PRECA 2/50 1/44 2/50 1/44 2/50 1/44 2/50 1/44↰

Both 3.3/50 0/44 5.7/50 0/44 5.7/50 0/44 5.7/50 0/44
PIE 16.4/50 4.7/44 16.4/50 4.7/44 17.7/50 4.7/44 17.7/50 5.3/44↰

PRECA 5/50 3/44 5/50 3/44 5/50 3/44 5/50 3/44↰

Both 25.3/50 11.3/44 25.4/50 11.3/44 26.4/50 11.3/44 28.4/50 11.3/44
Gehr et al. 8.0/50 5.0/44 16.8/50 8.1/44 26.1/50 10.1/44 26.1/50 10.3/44↰

PRECA 37/50 15/44 43/50 17/44 46/50 18/44 46/50 18/44
PRECA 29/50 11/44 38/50 16/44 46/50 18/44 46/50 18/44↰

BK 15/50 8/44 38/50 16/44 45/50 18/44 46/50 18/44↰

Preproc. 19/50 9/44 36/50 16/44 45/50 18/44 46/50 18/44↰

∅ 13/50 7/44 35/50 15/44 45/50 18/44 46/50 18/44↰

Random 29.9/50 12.1/44 29.9/50 12.1/44 30.0/50 12.1/44 30.0/50 12.1/44
P-Gen 34/50 13/44 37/50 15/44 37/50 15/44 37/50 15/44
#WP⊤ (resp. #WPQ) is the number of inferred weakest preconditions without (resp. with) a post-

condition. We study 3 variations of Daikon and PIE: (i) the original one (highlighted) on 100 random
examples; (ii) on PRECA examples; (iii) on both random and PRECA examples. We study the original
active Gehr et al. method (highlighted) and feed it with PRECA examples. Finally, we study PRECA
with its background knowledge and preprocess (highlighted), with background knowledge only (BK),
with preprocessing only (Preproc.), without any of them (∅) and in passive mode with 100 random
queries (Random). P-Gen being a static method, we consider only its original form.

Table 2: Results depending on the time budget

References
Astorga, A.; Srisakaokul, S.; Xiao, X.; and Xie, T. 2018.
Preinfer: Automatic inference of preconditions via symbolic
analysis. In DSN. IEEE.
Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.;
Lazaar, N.; Narodytska, N.; Quimper, C.-G.; and Walsh, T.
2013. Constraint acquisition via partial queries. In IJCAI.
Bessiere, C.; Koriche, F.; Lazaar, N.; and O’Sullivan, B.
2017. Constraint acquisition. Artificial Intelligence.
Burdy, L.; Cheon, Y.; Cok, D. R.; Ernst, M. D.; Kiniry, J. R.;
Leavens, G. T.; Leino, K. R. M.; and Poll, E. 2005. An
overview of jml tools and applications. STTT.
Cousot, P.; Cousot, R.; Fähndrich, M.; and Logozzo, F.
2013. Automatic inference of necessary preconditions. In
VMCAI’13. Springer.
Dijkstra, E. W. 1968. A constructive approach to the prob-
lem of program correctness. BIT Numerical Mathematics.
Ernst, M. D.; Cockrell, J.; Griswold, W. G.; and Notkin, D.
2001. Dynamically discovering likely program invariants to
support program evolution. TSE.
Floyd, R. W. 1993. Assigning meanings to programs. In
Program Verification. Springer.
Gehr, T.; Dimitrov, D.; and Vechev, M. 2015. Learning
commutativity specifications. In CAV’15.
Godefroid, P.; Lahiri, S. K.; and Rubio-González, C. 2011.
Statically validating must summaries for incremental com-
positional dynamic test generation. In SAS. Springer.
Hoare, C. A. R. 1969. An axiomatic basis for computer
programming. CACM.
Kirchner, F.; Kosmatov, N.; Prevosto, V.; Signoles, J.; and
Yakobowski, B. 2015. Frama-c: A software analysis per-
spective. Formal Aspects of Computing.
Meyer, B. 1988. Eiffel: A language and environment for
software engineering. JSS.
Padhi, S.; Sharma, R.; and Millstein, T. 2016. Data-driven
precondition inference with learned features. ACM SIG-
PLAN Notices.
Rossi, F.; Van Beek, P.; and Walsh, T. 2006. Handbook of
constraint programming. Elsevier.
Zhang, L.; Yang, G.; Rungta, N.; Person, S.; and Khurshid,
S. 2014. Feedback-driven dynamic invariant discovery. In
ISSTA. ACM.

	Introduction
	Relevance to KR

