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Abstract
This paper addresses a data integration problem: given sev-
eral mutually consistent datasets each of which measures a
subset of the variables of interest, how can one construct a
probabilistic model that fits the data and gives reasonable an-
swers to questions which are under-determined by the data?
Here we show how to obtain a Bayesian network model
which represents the unique probability function that agrees
with the probability distributions measured by the datasets
and otherwise has maximum entropy. We provide a general
algorithm, OBN-cDS, which offers substantial efficiency sav-
ings over the standard brute-force approach to determining
the maximum entropy probability function. Furthermore, we
develop modifications to the general algorithm which enable
further efficiency savings but which are only applicable in
particular situations. We show that there are circumstances in
which one can obtain the model (i) directly from the data; (ii)
by solving algebraic problems; and (iii) by solving relatively
simple independent optimisation problems.

1 Introduction
It is increasingly common to collect multiple datasets, in-
volving hundreds of variables and thousands of observa-
tions, to address a single problem. Different datasets tend to
measure different variables, even when the datasets are col-
lected with the same application in mind. For instance, it is
common in systems pharmacology—and indeed in systems
medicine more generally—to have datasets measuring pro-
teomics, transcriptomics, metabolomics, clinical data, and
patient-reported outcomes, and for these datasets to have
very few variables in common; see, e.g., (De Pretis, Landes,
and Peden 2021; Tricco et al. 2016). How do we integrate
all this data?

One approach to data integration is motivated by Objec-
tive Bayesian Epistemology (OBE), which holds that a ratio-
nal agent ought to adopt as a representation of her degrees
of belief the probability function with maximum entropy,
P †, from all those probability functions that fit her evidence
(Jaynes 2003; Williamson 2010; Landes and Williamson
2013; Landes and Williamson 2016). The entropy of a prob-
ability function is a measure of the extent to which it equiv-
ocates between possible outcomes, and this approach is usu-
ally justified on the grounds that P † is the function that fits
the evidence but is maximally non-committal or equivocal
in other respects.

In this paper, we apply OBE to the situation in which the
agent’s body of evidence consists of a collection of datasets
(and nothing else). We take all variables to be discrete and
we assume that the datasets have been gathered in such a
way that, when a variable occurs in more than one dataset,
it is genuinely the same variable, with the same number of
values, measured in the same way, in each dataset in which
it occurs. Furthermore, we assume that the datasets are
large and reliable enough that each dataset distribution pro-
vides an accurate estimate of the frequency distribution of
the measured variables, and that they are consistent in the
sense that these marginal frequency distributions are satisfi-
able by some joint probability function defined on the set V
of all the variables measured by the datasets.

The agent’s belief function P † is defined on the algebra
generated by this larger set of variables. OBE holds that P †
should agree with each marginal distribution of measured
frequencies, and should otherwise have maximum entropy.

In general, finding the function in a convex set of proba-
bility functions which has maximum entropy is a computa-
tionally hard optimisation problem (Paris 1994, Chapter 10).
Indeed, this has been viewed as a criticism of the maximum
entropy approach (Pearl 1988, p. 463). In this paper, we em-
ploy Bayesian networks to reduce the dimension of the prob-
lem in realistic cases, and thereby reduce its complexity. A
Bayesian net representation of the probability function P †

which is motivated by OBE is called an Objective Bayesian
Net or OBN (Williamson 2005). In this paper we develop a
general algorithm, OBN-cDS, which generates an OBN and
does so efficiently in realistic cases, and we show that this
algorithm is preferable to a brute-force approach to entropy
maximisation. Furthermore, we explore particular situations
in which one can generate an OBN even faster than is possi-
ble even by OBN-cDS.

This adds to the state-of-the-art in the following ways:
(a) it develops the OBE approach to data integration, (b)
it shows how Bayesian net algorithms can be used to de-
termine a maximum entropy probability function more ef-
ficiently, (c) it explores algebraic means to solve the maxi-
mum entropy optimisation problem and (d) it provides philo-
sophical underpinnings for a particular kind of ‘statistical
matching’ technique.

2 Main Findings



Algorithm 1 Pseudo Code of OBN-cDS
Input: Consistent datasets DS1, . . . , DSh

Output: Objective Bayesian Net with DAG H
and conditional probabilities as determined in Step
5.

1: For all i learn a Markov network structure Gi from DSi

representing independences of P ∗i .
2: Set overarching undirected graph G as the union of the
Gi.

3: Compute a minimal triangulation GT of G.
4: Orientate GT to give DAGH.
5: For each vertex inH, determine its probability distribu-

tion conditional on its parents:
a) For all vertices for which there exists a dataset which
measures this vertex and all its parents.
b) For all other vertices determine conditional probabil-
ities by solving the optimisation problem

Proposition 1 (Correctness of OBN-cDS). If each dataset
distribution P ∗i satisfies the conditional probabilistic inde-
pendence relationships represented by Gi, for i = 1, . . . , h,
then OBN-cDS outputs an OBN that represents the probabil-
ity function P †, from all those that agree with all measured
marginal probability distributions P ∗k , that has maximal en-
tropy.

Proposition 2 (Computational Complexity of OBN-cDS).
As long as the maximal degree of a vertex is bounded by
a polynomial, the complexity of learning the initial Markov
net structures is polynomial (Step 1). Steps 2–4 can be com-
puted in P-Time in terms of input graphs. Every application
of Step 5a runs in linear time, if arities of variables and the
number of parents is bounded by some constant. Step 5b
requires the solution of an optimisation problem, which has
fewer variables than the brute-force maximum entropy op-
timisation problem. For these reasons, the computational
complexity of OBN-cDS compares favourably with that of
the brute-force method.

See Figure 1 for a realistic problem instance. Run times
of our Matlab implementation are reported in the published
paper (Landes and Williamson 2022).

If there are only two datasets, h = 2, then we do not need
to optimise:

Proposition 3 (2 Datasets). In the case of two consis-
tent datasets, OBN-2cDS finds an OBN without under-
determined variables, where OBN-2cDS is a slight modifi-
cation of OBN-cDS.

Proposition 4 (Independent Optimisation Problems). If all
under-determined variables of H are leaves, then the prob-
lem of computing an OBN can be reduced to independently
computing the conditional probabilities at these leaves.

3 Future Work
A number avenues for further research stand out to us: (i)
to identify further efficiency savings to OBN-cDS; (ii) to
extend the methodology to include inconsistent datasets;
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Figure 1: The number of unknowns needing to be determined by
optimisation during Step 5b of OBN-cDS for 3 datasets. N is the
total number of variables. For N = 10, 13, 15, 18, 20 we created
3 datasets 200 times. Plots are provided for the average observed
number of unknowns in red, the maximum in purple and the mini-
mum in yellow.

and (iii) to apply the Matlab implementation to real-world
datasets.
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