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Abstract

We propose a new paradigm for Belief Change in which the
new information is represented as sets of models, while the
agent’s body of knowledge is represented as a nite set of
formulae, that is, a nite base. We dene new Belief Change
operations akin to traditional expansion and contraction, and
we identify the rationality postulates that emerge due to the
nite representability requirement. We also analyse different
logics concerning compatibility with our framework.

1 Introduction

Belief Change (Alchourrón, Gärdenfors, and Makinson,
1985) studies how an agent should rationally modify its cur-
rent beliefs when confronted with a piece of information.
The agent should preserve most of its original beliefs, which
is known as the principle of minimal change. The stan-
dard paradigm of Belief Change (Alchourrón, Gärdenfors,
and Makinson, 1985), named AGM, assumes that an agent’s
epistemic state is represented as a set of sentences logically
closed known as theories. A main issue with theories is that
they are often innite, whilst rational agents are cognitively
limited in the sense that an agent is only capable of carrying
a nite amount of explicit beliefs, from which its implicit
beliefs are drawn.
While in classical propositional logics, every theory can

be represented via a nite set of formulae, called nite base
(Hansson, 1996, 1993), this is not the case for more expres-
sive logics such as rst-order logic (FOL) and the Descrip-
tion Logics (DLs) EL and ALC (Baader et al., 2017). Com-
putationally, the niteness requirement is also important as
reasoners usually can only deal with nite sets of formulae.
Thus, it is paramount that Belief Change operations guar-
antee that the new epistemic state is nite based (Hansson,
2017). In fact, there are logics which are not even compati-
ble with niteness, that is, there are logics in which the only
rational outcome is not nite based (Table 1). The absence
of niteness has appeared in the DL literature as an obsta-
cle and is sometimes called non-axiomatizable bases (Liu et
al., 2011). Moreover, although the AGM rationality postu-
lates do not depend on any specic logic, classes of Belief
Change operations have been devised upon strong assump-
tions about the underlying logics, especially about their lan-
guage, as being closed under classical negation and being
compact. In the last years, efforts have been made to replace

some of these assumptions with weaker conditions in order
to extend the AGM paradigm. In this work, we consider the
incoming information as a set of models, which generalises
the AGM paradigm.

Our main contributions are: (1) we extend the AGM
paradigm to support the nite base requirement; (2) we gen-
eralise the input to be represented as sets of models; (3) our
approach abstracts unnecessary conditionals about the un-
derlying logic, (4) we analyse the compatibility of several
logics with respect to the niteness requirement.

2 Eviction and Reception

In this work, we view a logic as a satisfaction system (Aigu-
ier et al., 2018) Λ = (L,M, |=), where L is a language, M
is the set of models, also called interpretations, used to give
meaning to the sentences in L, and |= is a satisfaction rela-
tion which indicates that a model M satises a base B (in
symbols,M |= B).
As we are concerned about nite representability, we will

focus on sets of models that have a corresponding nite base
in Λ. The collection of all nitely representable sets of mod-
els in Λ is given by: FR(Λ) := {M ⊆ M | ∃B ∈ P f(L) :
Mod(B) = M}, where P f(L) is the set of all nite bases in
L and ModΛ(B) is the set of all models in M that satisfy B
(we omit the subscript Λ when clear from the context).

Next, we dene eviction (a counterpart for contraction)
and reception (a counterpart for expansion).

2.1 Eviction

Eviction changes the current nite base B removing any in-
terpretation in the input setM. IfMod(B)\M is not nitely
representable, then we could simply remove more models
until we obtain nite representability. Since we want to
preserve as many models of the original base as possible,
we look at the ⊆-maximal nitely representable subsets of
Mod(B)\M (Denition 1). These sets are the closest we can
get to the ideal result while keeping nite representability
when subtracting M. Before we present the eviction func-
tions based on this idea, we introduce some auxiliary tools.

Denition 1. Let Λ = (L,M, |=) be a satisfaction system
and M ⊆ M. MaxFRSubs(M,Λ) := {M′ ∈ FR(Λ) |

M
′ ⊆ M and ̸ ∃M

′′

∈ FR(Λ) withM′ ⊂ M
′′

⊆ M}.



Given a satisfaction system Λ = (L,M, |=) and a set
of models M ⊆ M, the set MaxFRSubs(M,Λ) contains
exactly all the largest (w.r.t. ⊆) nitely representable sub-
sets of M. Then, to contract a set M from a nite base
B, we can choose a nite base for one of the sets in
MaxFRSubs(Mod(B) \ M). However, this is only gener-
ally possible iff MaxFRSubs(Mod(B) \M,Λ) ̸= ∅ for all
B ∈ P f(L) and M ⊆ M. If this condition holds we say that
Λ is eviction-compatible.

Denition 2. A FR selection function on a satisfaction sys-
tem Λ is a map sel : P∗(FR(Λ)) → FR(Λ) such that
sel(X) ∈ X .

Thus, each FR selection function determines an eviction
function as follows.

Denition 3. Let Λ be an eviction-compatible satisfaction
system and sel a FR selection function on Λ. The maxi-
choice eviction function on Λ dened by sel is a map evcsel :
P f(L)× P(M) → P f(L) such that:

Mod(evcsel(B,M)) = sel(MaxFRSubs(Mod(B)\M,Λ)).

The operation evcsel chooses exactly one set in
MaxFRSubs. Another approach is to allow the selection
function to choose multiple elements, and then intersect all
of them to build the eviction result. However, we have
shown that this strategy cannot be applied in our setting.

Theorem 4. A model change operation evc, dened on an
eviction-compatible satisfaction system Λ, is a maxichoice
eviction function iff it satises the following postulates:

(success) M ∩Mod(evc(B,M)) = ∅.

(inclusion) Mod(evc(B,M)) ⊆ Mod(B).

(nite retainment) If Mod(evc(B,M)) ⊂ M
′ ⊆

Mod(B) \M thenM′ ̸∈ FR(Λ).

(uniformity) If MaxFRSubs(Mod(B) \ M,Λ) =
MaxFRSubs(Mod(B′) \ M

′,Λ) then Mod(evc(B,M)) =
Mod(evc(B′,M′)).

2.2 Reception

Reception alters a nite base B to incorporate all models
in M. In some satisfaction systems, Mod(B) ∪ M is not
nitely representable. With an analogous strategy as the one
for eviction, we dene reception using the smallest supersets
ofMod(B)∪M. The constructions and results for reception
are similar to eviction’s.

Denition 5. Let Λ = (L,M, |=) be a satisfaction system
and M ⊆ M. MinFRSups(M,Λ) := {M′ ∈ FR(Λ) | M ⊆

M
′ and ̸ ∃M

′′

∈ FR(Λ) withM ⊆ M
′′

⊂ M
′}.

Similarly, we can dene reception in Λ iff Λ is reception-
compatible. That is, if and only if MinFRSups(Mod(B) ∪
M,Λ) ̸= ∅ for all B ∈ P f(L) andM ⊆ M.

Denition 6. LetΛ = (L,M, |=) be a reception-compatible
satisfaction system and sel a FR selection function onΛ. The
maxichoice model reception function on Λ dened by sel is
a map rcpsel : P f(L)× P(M) → P f(L) such that:

Mod(rcpsel(B,M)) = sel(MinFRSups(Mod(B)∪M,Λ)).

We also identify the set of rationality postulates that char-
acterise the reception function from Denition 6. These pos-
tulates are analogous to those for eviction.

3 Compatibility

We analyse some satisfaction systems and establish whether
they are (or not) eviction- and reception-compatible. When
FR(Λ) is nite, eviction- and reception-compatibility de-
pend only on properties of the lattice formed by FR(Λ) un-
der ⊂. Theorem 7 is a consequence of this.

Theorem 7. Let Λ = (L,M, |=) be satisfaction system with
FR(Λ) nite. Then (1) Λ is eviction-compatible iff ∅ ∈
FR(Λ) and (2) Λ is reception-compatible iffM ∈ FR(Λ).

By Theorem 7, we can see that the framework we pre-
sented in the previous section is general enough to cover sev-
eral satisfaction systems without imposing much constraints
upon the logics being used to represent an agent’s beliefs.
In particular, it covers propositional logic and Horn logic
(containing ⊥) since in this case FR(Λ) is nite and we can
represent both ∅ andM.
Other interesting cases that are also both eviction-

and reception-compatible are Kleene’s 3-valued (K3) log-
ics (Kleene, 1952) and Gödel propositional logic (Hájek,
1998; Bergmann, 2008). The latter is one of the most im-
portant fuzzy logics and, in contrast with the previous cases,
there are innitely many models. Priest’s 3-valued (P3) log-
ics (Priest, 1979) cannot represent ∅ and, therefore, it is
not eviction-compatible. There are well-known fragments
of rst-order logic used for knowledge representation that
are neither eviction nor reception-compatible, as it is the
case of the classical DL ALC. Other popular, DLs, such
as DL-LiteR, have characteristics similar to propositional
logic (assuming a nite signature) and t with the eviction-
and reception-compatibility notions, even though models
can be innite. Table 1 summarises eviction- and reception-
compatibility for various satisfaction systems.

Satisfaction System
Compatible

Eviction Reception

Λ(Prop), Λ(Horn) Yes Yes
Λ(K3), Λ(Gödel, θ) Yes Yes
Λ(P3), Λ(LTLX) No Yes

Λ(DL-LiteR)† Yes Yes
Λ(ALC) No No

Table 1: Eviction- and reception-compatibility of different satis-
faction systems. †: only with nite signature

4 Conclusion

We introduced a new paradigm of Belief Change: the in-
coming information is represented as a set of models and
the agent’s epistemic state is represented as a nite base.
The agent can either incorporate the incoming models (via
reception) or remove them (via eviction). In either case, the
resulting belief base must be nitely representable. We leave
model revision as a future work. We envisage that the results
we obtain for eviction and reception shall shed light towards
this other operation. Another line of research concerns the
effects of partially constraining the structure of the resulting
base, in the spirit of pseudo-contractions.
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