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This extended abstract reports about the work in (Giordano
and Theseider Dupré 2022), concerning an ASP approach
for reasoning in a “concept-wise” multi-preferential seman-
tics for weighted conditional knowledge bases, in the multi-
valued case, and its use in the verification of some multilayer
networks. New results and ASP encodings, which take advan-
tage of weak constraints, have been investigated in (Alviano,
Giordano, and Theseider Dupré 2023).

The work stems from the area of conditional and preferen-
tial reasoning. Preferential approaches to common sense rea-
soning (Delgrande 1987; Makinson 1988; Kraus, Lehmann,
and Magidor 1990; Pearl 1990; Lehmann and Magidor 1992;
Benferhat et al. 1993; Booth and Paris 1998; Kern-Isberner
2001) have been recently extended to Description Logics
(DLs), to deal with inheritance with exceptions in ontolo-
gies, by allowing non-strict inclusions, called defeasible or
typicality inclusions, of the form T(C) v D (meaning “the
typical C’s are D’s” or “normally C’s are D’s”). Different
preferential semantics (Britz, Heidema, and Meyer 2008;
Giordano et al. 2009; Giordano et al. 2015; Britz et al. 2021)
and closure constructions have been proposed starting from
Casini and Straccia’s work (2010).

In recent work, a concept-wise multi-preferential seman-
tics has been proposed as a semantics of ranked knowledge
bases (KBs) in a lightweight description logic (Giordano
and Theseider Dupré 2020), in which defeasible or typicality
inclusions are given a rank, a natural number representing
their strength. The idea underlying the multi-preferential
semantics is that different preferences should be associated
to different concepts and, for instance, for two individuals x
and y, and two concepts, Swimmer and Student, x might be
more typical than y as a swimmer (x <Swimmer y) but less
typical than y as a student (y <Student x ).

This semantics has been shown to have some desirable
properties from the knowledge representation point of view
and has also been extended to the fuzzy case (Giordano and
Theseider Dupré 2021). In both the two-valued and fuzzy
case, it has been exploited to provide a preferential inter-
pretation to Multilayer Perceptrons (MLPs) (Haykin 1999),
an approach previously considered (Giordano, Gliozzi, and
Theseider Dupré 2022) for self-organising maps (SOMs)
(Kohonen, Schroeder, and Huang 2001). Considering as do-
main a set of input stimuli presented to the network, one can
build a semantic interpretation describing the input-output

behavior of the network as a multi-preferential interpretation,
where preferences are associated to concepts, which has sug-
gested a model checking approach for post-hoc verification
of both SOMs and MLPs. In particular, the model checking
approach has been exploited in the verification of typicality
properties of a multilayer networks, trained to recognize emo-
tions from input features, based on a Datalog encoding of the
model checking problem in the finite-valued case (Bartoli et
al. 2022).

For MLPs, based on a fuzzy multi-preferential semantics
for weighted KBs, a deep neural network can actually be re-
garded as a weighted conditional knowledge base (Giordano
and Theseider Dupré 2021). This rises the issue of defin-
ing proof methods for reasoning with weighted conditional
knowledge bases.

Weighted conditional ALC knowledge bases with typ-
icality have been considered through some different se-
mantic constructions. For reasoning with the concept-
wise multi-preferential entailment under the so called ϕ-
coherent semantics, the finite many-valued case has been
considered, a case well studied for DLs (Garcı́a-Cerdaña,
Armengol, and Esteva 2010; Bobillo and Straccia 2011;
Borgwardt and Peñaloza 2013).

An Answer Set Programming (ASP) approach has been
proposed for the boolean fragment of ALC, which neither
contains roles, nor universal and existential restrictions. The
problem of deciding ϕ-coherent entailment from a weighted
knowledge base (in a finitely-valued description logic, with
Gödel or with Łukasiewicz combination functions) is refor-
mulated as the problem of computing preferred answer sets
of an ASP program. The problem of verifying ϕ-coherent
entailment of a typicality inclusion T(C) v D ≥ α from a
weighted knowledge base K (a subsumption problem), can
be reformulated as a problem of generating answer sets rep-
resenting ϕ-coherent models of the KB, and then selecting
preferred answer sets, where a distinguished domain element
auxC is intended to represent a typicalC-element. For the se-
lection of preferred answer sets, those maximizing the degree
of membership of auxC in concept C, asprin (Brewka et al.
2015) is used. It is then verified that inclusion C v D ≥ α
holds in all the preferred answer sets. Our proof method
is sound and complete for the computation of ϕ-coherent
entailment in the fragment considered, and provides a Πp

2
complexity upper-bound for ϕ-coherent entailment over a



finite set of values.
In the paper, as a proof of concept, we have experi-

mented our approach over some weighted KBs correspond-
ing to some of the trained multilayer feedforward networks
considered by Thrun et al. (1991), exploiting ASP to ver-
ify properties of the network expressed as typicality prop-
erties in the finite many-valued case. This is a step to-
wards explainability of the black-box, in view of a trustwor-
thy, reliable and explainable AI (Adadi and Berrada 2018;
Guidotti et al. 2019), and of an integrated use of symbolic
reasoning and neural network models.

The paper does not provide the exact complexity of the
problem and only describes a proof-of-concept implemen-
tation. An PNP [log]-completeness result for ϕ-coherent en-
tailment in the many-valued case and new ASP encodings
have been investigated by Alviano, Giordano and Theseider
Dupré (2023), taking advantage of weak constraints, possibly
without the need for weights. Such encodings allow to deal
with weighted knowledge bases with larger search spaces.
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seider Dupré, D. 2022. An ASP approach for reasoning
about the conditional properties of neural networks: an ex-
periment in the recognition of basic emotions. In Datalog
2.0 2022, volume 3203 of CEUR Workshop Proc., 54–67.
CEUR-WS.org.
Benferhat, S.; Cayrol, C.; Dubois, D.; Lang, J.; and Prade,
H. 1993. Inconsistency management and prioritized syntax-
based entailment. In Proc. IJCAI’93, Chambéry,, 640–647.
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