
Body-Decoupled Grounding via Solving: A Novel Approach on the ASP
Bottleneck (Extended Abstract)∗

Viktor Besin1 , Markus Hecher2 , Stefan Woltran1

1 TU Wien, Austria
2 Massachusetts Institute of Technology, United States
{vbesin, woltran}@dbai.tuwien.ac.at, hecher@mit.edu

Abstract

Answer-Set Programming (ASP) has seen tremendous pro-
gress over the last two decades and is nowadays successfully
applied in many real-world domains. However, for certain
problems, the well-known ASP grounding bottleneck still
causes severe problems. This becomes virulent when ground-
ing of rules, where the variables have to be replaced by con-
stants, leads to a ground program that is too huge to be pro-
cessed by the ASP solver. In this work, we tackle this prob-
lem by a novel method that decouples non-ground atoms in
rules in order to delegate the evaluation of rule bodies to the
solving process. Our procedure translates a non-ground nor-
mal program into a ground disjunctive program that is expo-
nential only in the maximum predicate arity, and thus poly-
nomial if this arity is bounded by a constant. We demonstrate
the feasibility of this new method experimentally by compar-
ing it to standard ASP technology in terms of grounding size,
grounding time and runtime.

1 Body-Decoupled Grounding
Motivated by the ASP grounding bottleneck (Cuteri et al.
2020; Tsamoura, Gutiérrez-Basulto, and Kimmig 2020), the
problem of traditional grounding systems resulting in ex-
ponentially large programs when instantiating non-ground
rules (even for programs with bounded predicate arities), we
briefly tease the concept of body-decoupled grounding. The
idea of this approach is to reduce the grounding size and
grounding time by decoupling dependencies between differ-
ent predicates of rule bodies. The potential of this is moti-
vated by the following example.
Example 1. Assume the following non-ground program Π
that decides in (1) for each edge (e) of a given graph,
whether to pick it (p) or not (p̄). Then, in (2) it is ensured
that the choice of edges does not form triangles.

p(A,B) ∨ p̄(A,B)← e(A,B) (1)
← p(X,Y), p(Y,Z), p(X,Z), X ̸= Y, Y ̸= Z,X ̸= Z. (2)

The typical grounding effort of (2) is in O(|dom(Π)|3). Our
approach grounds body predicates of (2) individually, yield-
ing groundings that are linear in the size of the ground
atoms. In our example, this corresponds to O(|dom(Π)|2)
due to arity 2.

∗This is an extended abstract of a paper (Besin, Hecher, and
Woltran 2022) that appeared at IJCAI’22.

Ground Non-Ground (bounded arity)

Tight/Normal Programs NP-c ΣP
2 -c

Disjunctive Programs ΣP
2 -c ΣP

3 -c

Table 1: Known complexity results for some of the program types.

Based on earlier complexity results for ground and non-
ground logic programs (Bidoı́t and Froidevaux 1991; Marek
and Truszczyński 1991; Eiter et al. 2007), we introduce a
reduction-based translation from non-ground, tight (and nor-
mal) programs to ground, disjunctive programs (see arrow
in Tab. 1), resulting in an alternative grounding procedure.
Our encodings translate a non-ground rule by (i) guessing
whether the head atom is part of the answer set, (ii) ensur-
ing satisfiabilty of the rule and (iii) preventing unfounded-
ness of the guessed head atom. To lift this idea to normal
programs, one can rely on encoding (iv) orderings. Since
every step of the procedure instantiates at most one body
predicate at a time, we intuitively deploy body-decoupling,
which keeps the grounding size polynomial when assum-
ing bounded predicate arity. Notably, our results imply that
body-decoupled grounding blends-in well with existing ap-
proaches, enabling us to interleave different techniques.

2 Experimental Results
We implemented a software tool, called newground1, re-
alizing body-decoupled grounding via search as described
above. The system newground is written in Python3 and
uses, among others, the API of clingo 5.5 and its abil-
ity to efficiently parse logic programs via syntax trees. In
our implementation, we opted for partial reducability, al-
lowing users to select program parts that shall be reduced
and those being (traditionally) grounded, thereby internally
relying on gringo.

In order to evaluate newground, we design a series
of benchmarks. Clearly, we cannot beat highly optimized
grounders in all imaginable scenarios. Instead, we discuss
potential use cases, where body-decoupled grounding is pre-
ferrable, since this approach can be incorporated into ev-
ery grounder. We consider these (directed) graph scenar-
ios: (S1) 3-coloring, (S2) reachable paths, (S3) cliques,

1The system (incl. supplemental material) is available at https:
//github.com/viktorbesin/newground.

https://github.com/viktorbesin/newground
https://github.com/viktorbesin/newground

Figure 1: Grounding profile of S1 for gringo (left) and newground (right). The x-axis refers to the instance size; the y-axis indicates den-
sity. Circles mark instances grounded < 1800s; the left (right) half depicts grounding time (size), respectively. Mind the different color
scales (e.g., 10000MB vs. 1600MB).

Figure 2: (Left): Scatter plot of grounding size over Scenarios S1–S4 of newground (x-axis) compared to both gringo (blue) and idlv
(green) on the y-axis. Those instances that could be solved are highlighted in orange. (Right): Cactus plot of overall (grounding and solving)
time over Scenarios S1-S4.

(S4) non-partition-removal colorings (Weinzierl, Taupe, and
Friedrich 2020) and (S5) stable marriages (ASP comp.
2014), and compared to gringo and idlv while measur-
ing grounding size, grounding time as well as overall time.

From our experiments we crafted grounding profiles for
each tool. Figure 1 depicts the grounding profile of S1 for
gringo (left) and newground (right), showing grounding
times and sizes, depending on the instance size (x-axis) and
density (y-axis). Interestingly, for newground grounding
times and sizes for a fixed instance size (column) of Fig-
ure 1 (right) are quite similar, which is in contrast to Figure 1
(left), suggesting that compared to gringo, newground
is not that sensitive to instance density.

In terms of pure grounding time, our experiments show
that newground in fact outperforms in four of five scenar-
ios. Interestingly, while doing so, newground also mas-
sively reduces the grounding size (cf., Figure 2 (left), al-
most all dots above diagonal), while keeping instances solv-
able where gringo and idlv output groundings beyond
30GB. For the overall (solving) performance we refer to Fig-
ure 2 (right). While newground performs best, we still
see a clear difference between solving and grounding per-
formance, which reveals that only a small amount of those
grounded instances can then actually be solved by clingo
within the remaining time. More plots and evaluation can be
found in (Besin, Hecher, and Woltran 2022).

3 Conclusion
This work introduces a grounding-approach based on a
reduction suggesting the body-decoupling of grounding-
intense ASP rules. The reduction translates tight (normal)

non-ground rules into disjunctive ground rules, thereby be-
ing exponential only in the maximum predicate arity. While
our evaluation shows that body-decoupled grounding ap-
plied on crucial (tight) program parts reduces grounding size
compared to state-of-the-art exact grounders, we are cur-
rently working on evaluating and tuning of an implemen-
tation for normal programs (Unalan 2022).

References
Besin, V.; Hecher, M.; and Woltran, S. 2022. Body-Decoupled
Grounding via Solving: A Novel Approach on the ASP Bottleneck.
In IJCAI’22, 2546–2552. ijcai.org.
Bidoı́t, N., and Froidevaux, C. 1991. Negation by default
and unstratifiable logic programs. Theoretical Computer Science
78(1):85–112.
Cuteri, B.; Dodaro, C.; Ricca, F.; and Schüller, P. 2020. Overcom-
ing the grounding bottleneck due to constraints in ASP solving:
Constraints become propagators. In IJCAI, 1688–1694. ijcai.org.
Eiter, T.; Faber, W.; Fink, M.; and Woltran, S. 2007. Complexity
results for answer set programming with bounded predicate arities
and implications. Annals of Mathematics and Artificial Intelligence
51(2-4):123–165.
Marek, W., and Truszczyński, M. 1991. Autoepistemic logic. Jour-
nal of the ACM 38(3):588–619.
Tsamoura, E.; Gutiérrez-Basulto, V.; and Kimmig, A. 2020. Be-
yond the grounding bottleneck: Datalog techniques for inference
in probabilistic logic programs. In AAAI’20, 10284–10291. AAAI.
Unalan, K. 2022. Body-Decoupled Grounding in Normal Answer
Set Programs. Bachelor’s Thesis, TU Wien, Austria.
Weinzierl, A.; Taupe, R.; and Friedrich, G. 2020. Advancing lazy-
grounding ASP solving techniques - restarts, phase saving, heuris-
tics, and more. Theory Pract. Log. Program. 20(5):609–624.

	Body-Decoupled Grounding
	Experimental Results
	Conclusion

