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Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability
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Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.
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Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving
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What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
FCC: Radio frequency auction
Gioia Tauro: Workforce management
NASA: Decision support for Space Shuttle
SBB: Train disposition
Siemens: Partner units configuration
Variantum: Product configuration
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What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Any industrial impact?

ASP Tech companies: DLV Systems and Potassco Solutions
Increasing interest in (large) companies
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Foundation

Open and Closed world reasoning

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false
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Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

offers defaults, reachability, succinctness

ASP offers both open and closed world reasoning
by using stable model semantics
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Foundation

Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n
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Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Semantics given by stable models, informally,
models of P justifying each true atom by a proof

Minimal models in the logic HT (Heyting’30) / G3 (Gödel’32)

Torsten Schaub (KRR@UP) ASP in Industry 11 / 43



Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

a

has the

models {a}, {a, b}
minimal models {a}
stable models {a}
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Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

¬b → a

has the

models {a}, {b}, {a, b}
minimal models {a}, {b}
stable models {a}
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Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)
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Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ
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Foundation

Tautologies

H T a ¬a a ∨ ¬a ¬¬a ¬¬a ∨ ¬a a← ¬¬a
{a} {a} T F T T T T
∅ {a} F F F T T F
∅ ∅ F T T F T T
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Foundation

Equilibrium models
(Pearce’96)

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note

⟨T ,T ⟩ acts as a classical model
⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T )
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Usage

Modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Usage

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C]

#minimize { C : q(X), p(X,C) }
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Usage

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem
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Usage

Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b ,10). road(b,c ,20). road(c,d ,25). road(d,a ,40).

road(b,d ,30). road(d,c ,25). road(c,a ,35).
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Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.
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{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

:~ travel(X,Y), road(X,Y,D). [D,X,Y]
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Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s
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Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s
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At work

Routing and scheduling
Applications

Routing

multi-agent path finding
phylogenetic inference
wire routing
etc

Routing and Scheduling

train scheduling
embedded system design
warehouse robotics
etc

Techniques

index variables by time steps
view time as an order on variables
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At work

Multi-agent path finding

Problem Find (optimal) collision-free paths for a group of agents
from their location to an (assigned) target

Example
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At work

Timestep-based routing
No scheduling yet

% guess moves

{ move(A,U,V,T): edge(U,V) } <= 1 :- agent(A), T=1..n.

% infer agent positions

at(A,U,0) :- start(A,U).

at(A,V,T) :- move(A, ,V,T), T=1..n.
at(A,U,T) :- at(A,U,T-1), not move(A,U, ,T), T=1..n.

% ensure path-like strolls

:- move(A,U, ,T), not at(A,U,T-1).

:- goal(A,U), not at(A,U,n).

% handle vertex/swap/follow conflicts

:- { at(A,U,T) } > 1, vertex(U), T=0..n.
:- move( ,U,V,T), move( ,V,U,T).

:- at(A,U,T), at(B,U,T+1), A!=B, m=fc.

% ensure unique agent positions (redundant/for performance)

:- { at(A,U,T) } != 1, agent(A), T=1..n.
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At work

Timestep-based to -free routing
in view of scheduling

Idea move(A, U, V, T) ⇝ move(A, U, V)

Pros

no timesteps
no explicit bound

Cons

no cyclic (parts of) trajectories
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At work

Timestep-free routing, part I
No scheduling yet

% generate moves with in and out degrees of one

{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(V).

{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(U).

:- move(A,U, ), not start(A,U), not move(A, ,U).

:- move(A, ,U), not goal(A,U), not move(A,U, ).

% fix in and out degrees of start and goal vertices

:- start(A,U), move(A, ,U).

:- goal(A,U), move(A,U, ).

:- start(A,U), not goal(A,U), not move(A,U, ).

:- goal(A,U), not start(A,U), not move(A, ,U).
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:- move(A,U, ), not start(A,U), not move(A, ,U).
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% fix in and out degrees of start and goal vertices
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At work

Timestep-free routing, part II
No scheduling yet

% generate order considering conflict positions

resolve(A,B,U) :- start(A,U), move(B, ,U), A!=B.

resolve(A,B,U) :- goal(B,U), move(A, ,U), A!=B.

{ resolve(A,B,U);

resolve(B,A,U) } >= 1 :- move(A, ,U), move(B, ,U), A<B.

% discard invalid orders

:- resolve(A,B,U), resolve(B,A,U).
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At work

Timestep-free routing, part III
No scheduling yet

Acyclicity constraints

% check order

#edge ((A,U),(A,V)) : move(A,U,V).

#edge ((A,V),(B,U)) : resolve(A,B,U), move(A,U,V).

Difference constraints

% check order

&diff{(A,U)+1}<=(A,V) :- move(A,U,V).

&diff{(A,V)+1}<=(B,U) :- resolve(A,B,U), move(A,U,V).

Difference constraints

% check order

&diff{(A,U)+D}<=(A,V) :- move(A,U,V), edge(U,V,D).

&diff{(A,V)+D}<=(B,U) :- resolve(A,B,U), move(A,U,V), edge(U,V,D).
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At work

Timestep-free routing and scheduling, III

Acyclicity constraints (clingo, routing only)

% check order

#edge ((A,U),(A,V)) : move(A,U,V).

#edge ((A,V),(B,U)) : resolve(A,B,U), move(A,U,V).

Difference constraints (clingo[dl], routing only)

% check order

&diff{(A,U)+1}<=(A,V) :- move(A,U,V).

&diff{(A,V)+1}<=(B,U) :- resolve(A,B,U), move(A,U,V).

Difference constraints (clingo[dl], routing and scheduling)

% check order

&diff{(A,U)+D}<=(A,V) :- move(A,U,V), edge(U,V,D).

&diff{(A,V)+D}<=(B,U) :- resolve(A,B,U), move(A,U,V), edge(U,V,D).
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At work

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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At work

ASP solving process modulo theories
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At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4
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At work

Open and Closed world reasoning
on numeric domains

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined
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At work

Open and Closed world reasoning
on numeric domains

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

is monotonic

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

is non-monotonic

offers defaults, succinctness
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At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A
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At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}
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At work

HTc-satisfaction

HTc -interpretation over X ,D is a pair ⟨h, t⟩ of valuations over X ,D
such that h ⊆ t

An HTc -interpretation ⟨h, t⟩ satisfies a formula φ, written ⟨h, t⟩ |= φ,
if the following conditions hold

1 ⟨h, t⟩ ̸|= ⊥
2 ⟨h, t⟩ |= a if both h ∈ J a K and t ∈ J a K for a ∈ A
3 ⟨h, t⟩ |= φ ∧ ψ if ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
4 ⟨h, t⟩ |= φ ∨ ψ if ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
5 ⟨h, t⟩ |= φ→ ψ if ⟨h′, t⟩ ̸|= φ or ⟨h′, t⟩ |= ψ

for both h′ = h and h′ = t.
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At work

HTc-equilibrium model

A total interpretation ⟨t, t⟩ is an equilibrium model of
a formula φ, if

1 ⟨t, t⟩ |= φ
2 ⟨h, t⟩ ̸|= φ for all h ⊂ t

t is called an HTc -stable model of φ
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At work

HTc benefits

Semantic framework for ASP modulo theory systems (AMT)
combining closed and open world reasoning

conservative extension of HT
flexibility due to open syntax and denotational semantics
study of AMT systems
study of language fragments
soundness of program transformations
warrant substitution of equivalent expressions
etc.
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Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

Multi-shot solving
Theory solving

Linear Temporal, Dynamic and Metric reasoning

Visualization

Playful? https://potassco.org
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Recap

Take home message
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Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

And it’s fun !
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