
ASP in Industry, here and there

Torsten Schaub

University of Potsdam & Potassco Solutions GmbH

Torsten Schaub (KRR@UP) ASP in Industry 1 / 43

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 2 / 43

Motivation

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 3 / 43

Motivation

Traditional Software

��
��
User

Program

Computer

��
��
User

Knowledge

Solver

Torsten Schaub (KRR@UP) ASP in Industry 4 / 43

Motivation

Knowledge-driven Software

��
��
User

Program

Computer

��
��
User

Knowledge

Solver

Torsten Schaub (KRR@UP) ASP in Industry 4 / 43

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) ASP in Industry 5 / 43

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) ASP in Industry 5 / 43

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) ASP in Industry 5 / 43

Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.

Torsten Schaub (KRR@UP) ASP in Industry 6 / 43

Motivation

Industrial impact

Within SIEMENS, constraint technologies have been successfully
used for solving configuration problems for more than 25 years.
[...] approximately 80 percent of the maintenance costs and more
than 60 percent of the development costs for the knowledge rep-
resentation and reasoning tasks were saved.

In: A. Falkner et al. Twenty-Five Years of Successful Application of Constraint Technologies at Siemens. AI Magazine.
37(4):67-80, 2016.

Torsten Schaub (KRR@UP) ASP in Industry 6 / 43

Nutshell

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 7 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

Where is ASP from?

Databases
Logic programming
Knowledge representation and reasoning
Satisfiability solving

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP? ASP = DB+LP+KR+SAT !
ASP is an approach for declarative problem solving

Where is ASP from?

Databases
Logic programming
Knowledge representation and reasoning
Satisfiability solving

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
FCC: Radio frequency auction
Gioia Tauro: Workforce management
NASA: Decision support for Space Shuttle
SBB: Train disposition
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
FCC: Radio frequency auction
Gioia Tauro: Workforce management
NASA: Decision support for Space Shuttle
SBB: Train disposition
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Debian, Ubuntu: Linux package configuration
Exeura: Call routing
FCC: Radio frequency auction ��

Gioia Tauro: Workforce management
NASA: Decision support for Space Shuttle
SBB: Train disposition
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Any industrial impact?

ASP Tech companies: DLV Systems and Potassco Solutions
Increasing interest in (large) companies

Torsten Schaub (KRR@UP) ASP in Industry 8 / 43

Foundation

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 9 / 43

Foundation

Open and Closed world reasoning

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

Torsten Schaub (KRR@UP) ASP in Industry 10 / 43

Foundation

Open and Closed world reasoning

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

Torsten Schaub (KRR@UP) ASP in Industry 10 / 43

Foundation

Open and Closed world reasoning

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

Torsten Schaub (KRR@UP) ASP in Industry 10 / 43

Foundation

Open and Closed world reasoning

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

offers defaults, reachability, succinctness

Torsten Schaub (KRR@UP) ASP in Industry 10 / 43

Foundation

Open and Closed world reasoning

Open world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it is either true or false

is monotonic

Closed world reasoning

if a statement is true, it remains true
if a statement is false, it remains false
if a statement is unknown, it becomes false

is non-monotonic

offers defaults, reachability, succinctness

ASP offers both open and closed world reasoning
by using stable model semantics

Torsten Schaub (KRR@UP) ASP in Industry 10 / 43

Foundation

Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Torsten Schaub (KRR@UP) ASP in Industry 11 / 43

Foundation

Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0︸︷︷︸
head

:- a1, . . . , am, not am+1, . . . , not an.︸ ︷︷ ︸
body

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Torsten Schaub (KRR@UP) ASP in Industry 11 / 43

Foundation

Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Torsten Schaub (KRR@UP) ASP in Industry 11 / 43

Foundation

Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Semantics given by stable models, informally,
models of P justifying each true atom by a proof

Torsten Schaub (KRR@UP) ASP in Industry 11 / 43

Foundation

Logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A rule is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Semantics given by stable models, informally,
models of P justifying each true atom by a proof

Minimal models in the logic HT (Heyting’30) / G3 (Gödel’32)

Torsten Schaub (KRR@UP) ASP in Industry 11 / 43

Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

a

has the

models {a}, {a, b}
minimal models {a}
stable models {a}

Torsten Schaub (KRR@UP) ASP in Industry 12 / 43

Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The fact

a

has the

models {a}, {a, b}
minimal models {a}
stable models {a}

Torsten Schaub (KRR@UP) ASP in Industry 12 / 43

Foundation

Open and Closed world reasoning
by example

Alphabet {a, b}

The rule

¬b → a

has the

models {a}, {b}, {a, b}
minimal models {a}, {b}
stable models {a}

Torsten Schaub (KRR@UP) ASP in Industry 12 / 43

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP in Industry 13 / 43

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP in Industry 13 / 43

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP in Industry 13 / 43

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP in Industry 13 / 43

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP in Industry 13 / 43

Foundation

The logic of Here-and-There (HT)

Formula φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ

Interpretation A pair ⟨H,T ⟩ of sets of atoms with H ⊆ T

H is called “here” and
T is called “there”

Note ⟨H,T ⟩ is a simplified Kripke structure

Intuition

H represents provably true atoms
T represents possibly true atoms

atoms not in T are false

Idea

⟨H,T ⟩ |= φ ∼ φ is provably true
⟨T ,T ⟩ |= φ ∼ φ is possibly true (ie, classically true)

Torsten Schaub (KRR@UP) ASP in Industry 13 / 43

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP in Industry 14 / 43

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP in Industry 14 / 43

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP in Industry 14 / 43

Foundation

Satisfaction

⟨H,T ⟩ |= a if a ∈ H for any atom a

⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ

⟨H,T ⟩ |= φ→ ψ if ⟨X ,T ⟩ |= φ implies ⟨X ,T ⟩ |= ψ
for both X = H,T

Note ⟨H,T ⟩ |= ¬φ if ⟨T ,T ⟩ ̸|= φ since ¬φ = φ→ ⊥

An interpretation ⟨H,T ⟩ is a model of φ, if ⟨H,T ⟩ |= φ

Torsten Schaub (KRR@UP) ASP in Industry 14 / 43

Foundation

Tautologies

H T a ¬a a ∨ ¬a ¬¬a ¬¬a ∨ ¬a a← ¬¬a
{a} {a} T F T T T T
∅ {a} F F F T T F
∅ ∅ F T T F T T

Torsten Schaub (KRR@UP) ASP in Industry 15 / 43

Foundation

Tautologies

H T a ¬a a ∨ ¬a ¬¬a ¬¬a ∨ ¬a a← ¬¬a
{a} {a} T F T T T T
∅ {a} F F F T T F
∅ ∅ F T T F T T

Torsten Schaub (KRR@UP) ASP in Industry 15 / 43

Foundation

Equilibrium models
(Pearce’96)

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note

⟨T ,T ⟩ acts as a classical model
⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T)

Torsten Schaub (KRR@UP) ASP in Industry 16 / 43

Foundation

Equilibrium models
(Pearce’96)

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note

⟨T ,T ⟩ acts as a classical model
⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T)

Torsten Schaub (KRR@UP) ASP in Industry 16 / 43

Foundation

Equilibrium models
(Pearce’96)

A total interpretation ⟨T ,T ⟩ is an equilibrium model of
a formula φ, if

1 ⟨T ,T ⟩ |= φ
2 ⟨H,T ⟩ ̸|= φ for all H ⊂ T

T is called a stable model of φ

Note

⟨T ,T ⟩ acts as a classical model
⟨H,T ⟩ |= P iff H |= PT (PT is the reduct of P by T)

Torsten Schaub (KRR@UP) ASP in Industry 16 / 43

Usage

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 17 / 43

Usage

Modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP in Industry 18 / 43

Usage

Language constructs

Facts q(42).

Rules p(X) :- q(X), not r(X).

Conditional literals p :- q(X) : r(X).

Disjunction p(X) ; q(X) :- r(X).

Integrity constraints :- q(X), p(X).

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y).

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.

Multi-objective optimization :∼ q(X), p(X,C). [C]

#minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) ASP in Industry 19 / 43

Usage

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem

Torsten Schaub (KRR@UP) ASP in Industry 20 / 43

Usage

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting
each city once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design,
and the core of the vehicle routing problem

Torsten Schaub (KRR@UP) ASP in Industry 20 / 43

Usage

Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b ,10). road(b,c ,20). road(c,d ,25). road(d,a ,40).

road(b,d ,30). road(d,c ,25). road(c,a ,35).

Torsten Schaub (KRR@UP) ASP in Industry 21 / 43

Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

Torsten Schaub (KRR@UP) ASP in Industry 22 / 43

Usage

Traveling salesperson
Problem encoding, tsp.lp

{ travel(X,Y) } :- road(X,Y,_).

visited(Y) :- travel(X,Y), start(X).

visited(Y) :- travel(X,Y), visited(X).

:- city(X), not visited(X).

:- city(X), 2 { travel(X,Y) }.

:- city(X), 2 { travel(Y,X) }.

:~ travel(X,Y), road(X,Y,D). [D,X,Y]

Torsten Schaub (KRR@UP) ASP in Industry 22 / 43

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP in Industry 23 / 43

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP in Industry 23 / 43

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP in Industry 23 / 43

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP in Industry 23 / 43

Usage

Running salesperson

$ clingo tsp.lp cities.lp

clingo version 5.3.1

Reading ...

Solving ...

Answer: 1

start(a) [...] road(c,a,35)

travel(a,b) travel(b,d) travel(d,c) travel(c,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 100

Answer: 2

start(a) [...] road(c,a,35)

travel(a,b) travel(b,c) travel(c,d) travel(d,a)

visited(b) visited(c) visited(d) visited(a)

Optimization: 95

OPTIMUM FOUND

Models : 2

Optimum : yes

Optimization : 95

Calls : 1

Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.002s

Torsten Schaub (KRR@UP) ASP in Industry 23 / 43

At work

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 24 / 43

At work

Routing and scheduling
Applications

Routing

multi-agent path finding
phylogenetic inference
wire routing
etc

Routing and Scheduling

train scheduling
embedded system design
warehouse robotics
etc

Techniques

index variables by time steps
view time as an order on variables

Torsten Schaub (KRR@UP) ASP in Industry 25 / 43

At work

Routing and scheduling
Applications

Routing

multi-agent path finding
phylogenetic inference
wire routing
etc

Routing and Scheduling

train scheduling
embedded system design
warehouse robotics
etc

Techniques

index variables by time steps
view time as an order on variables

Torsten Schaub (KRR@UP) ASP in Industry 25 / 43

At work

Routing and scheduling
Applications

Routing

multi-agent path finding
phylogenetic inference
wire routing
etc

Routing and Scheduling

train scheduling
embedded system design
warehouse robotics
etc

Techniques

index variables by time steps
view time as an order on variables

Torsten Schaub (KRR@UP) ASP in Industry 25 / 43

At work

Routing and scheduling
Applications

Routing

multi-agent path finding
phylogenetic inference
wire routing
etc

Routing and Scheduling

train scheduling
embedded system design
warehouse robotics
etc

Techniques

index variables by time steps
view time as an order on variables

Torsten Schaub (KRR@UP) ASP in Industry 25 / 43

At work

Routing and scheduling
Applications

Routing

multi-agent path finding
phylogenetic inference
wire routing
etc

Routing and Scheduling

train scheduling
embedded system design
warehouse robotics
etc

Techniques

index variables by time steps
view time as an order on variables

Torsten Schaub (KRR@UP) ASP in Industry 25 / 43

At work

Multi-agent path finding

Problem Find (optimal) collision-free paths for a group of agents
from their location to an (assigned) target

Example

Torsten Schaub (KRR@UP) ASP in Industry 26 / 43

At work

Multi-agent path finding

Problem Find (optimal) collision-free paths for a group of agents
from their location to an (assigned) target

Example

Torsten Schaub (KRR@UP) ASP in Industry 26 / 43

At work

Multi-agent path finding

Problem Find (optimal) collision-free paths for a group of agents
from their location to an (assigned) target

Example

Torsten Schaub (KRR@UP) ASP in Industry 26 / 43

At work

Timestep-based routing
No scheduling yet

% guess moves

{ move(A,U,V,T): edge(U,V) } <= 1 :- agent(A), T=1..n.

% infer agent positions

at(A,U,0) :- start(A,U).

at(A,V,T) :- move(A, ,V,T), T=1..n.
at(A,U,T) :- at(A,U,T-1), not move(A,U, ,T), T=1..n.

% ensure path-like strolls

:- move(A,U, ,T), not at(A,U,T-1).

:- goal(A,U), not at(A,U,n).

% handle vertex/swap/follow conflicts

:- { at(A,U,T) } > 1, vertex(U), T=0..n.
:- move(,U,V,T), move(,V,U,T).

:- at(A,U,T), at(B,U,T+1), A!=B, m=fc.

% ensure unique agent positions (redundant/for performance)

:- { at(A,U,T) } != 1, agent(A), T=1..n.

Torsten Schaub (KRR@UP) ASP in Industry 27 / 43

At work

Timestep-based to -free routing
in view of scheduling

Idea move(A, U, V, T) ⇝ move(A, U, V)

Pros

no timesteps
no explicit bound

Cons

no cyclic (parts of) trajectories

Torsten Schaub (KRR@UP) ASP in Industry 28 / 43

At work

Timestep-free routing, part I
No scheduling yet

% generate moves with in and out degrees of one

{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(V).

{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(U).

:- move(A,U,), not start(A,U), not move(A, ,U).

:- move(A, ,U), not goal(A,U), not move(A,U,).

% fix in and out degrees of start and goal vertices

:- start(A,U), move(A, ,U).

:- goal(A,U), move(A,U,).

:- start(A,U), not goal(A,U), not move(A,U,).

:- goal(A,U), not start(A,U), not move(A, ,U).

Torsten Schaub (KRR@UP) ASP in Industry 29 / 43

At work

Timestep-free routing, part I
No scheduling yet

% generate moves with in and out degrees of one

{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(V).

{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(U).

:- move(A,U,), not start(A,U), not move(A, ,U).

:- move(A, ,U), not goal(A,U), not move(A,U,).

% fix in and out degrees of start and goal vertices

:- start(A,U), move(A, ,U).

:- goal(A,U), move(A,U,).

:- start(A,U), not goal(A,U), not move(A,U,).

:- goal(A,U), not start(A,U), not move(A, ,U).

Torsten Schaub (KRR@UP) ASP in Industry 29 / 43

At work

Timestep-free routing, part II
No scheduling yet

% generate order considering conflict positions

resolve(A,B,U) :- start(A,U), move(B, ,U), A!=B.

resolve(A,B,U) :- goal(B,U), move(A, ,U), A!=B.

{ resolve(A,B,U);

resolve(B,A,U) } >= 1 :- move(A, ,U), move(B, ,U), A<B.

% discard invalid orders

:- resolve(A,B,U), resolve(B,A,U).

Torsten Schaub (KRR@UP) ASP in Industry 30 / 43

At work

Timestep-free routing, part III
No scheduling yet

Acyclicity constraints

% check order

#edge ((A,U),(A,V)) : move(A,U,V).

#edge ((A,V),(B,U)) : resolve(A,B,U), move(A,U,V).

Difference constraints

% check order

&diff{(A,U)+1}<=(A,V) :- move(A,U,V).

&diff{(A,V)+1}<=(B,U) :- resolve(A,B,U), move(A,U,V).

Difference constraints

% check order

&diff{(A,U)+D}<=(A,V) :- move(A,U,V), edge(U,V,D).

&diff{(A,V)+D}<=(B,U) :- resolve(A,B,U), move(A,U,V), edge(U,V,D).

Torsten Schaub (KRR@UP) ASP in Industry 31 / 43

At work

Timestep-free routing, part III
No scheduling yet

Acyclicity constraints (clingo)

% check order

#edge ((A,U),(A,V)) : move(A,U,V).

#edge ((A,V),(B,U)) : resolve(A,B,U), move(A,U,V).

Difference constraints (clingo[dl])

% check order

&diff{(A,U)+1}<=(A,V) :- move(A,U,V).

&diff{(A,V)+1}<=(B,U) :- resolve(A,B,U), move(A,U,V).

Difference constraints

% check order

&diff{(A,U)+D}<=(A,V) :- move(A,U,V), edge(U,V,D).

&diff{(A,V)+D}<=(B,U) :- resolve(A,B,U), move(A,U,V), edge(U,V,D).

Torsten Schaub (KRR@UP) ASP in Industry 31 / 43

At work

Timestep-free routing and scheduling, III

Acyclicity constraints (clingo, routing only)

% check order

#edge ((A,U),(A,V)) : move(A,U,V).

#edge ((A,V),(B,U)) : resolve(A,B,U), move(A,U,V).

Difference constraints (clingo[dl], routing only)

% check order

&diff{(A,U)+1}<=(A,V) :- move(A,U,V).

&diff{(A,V)+1}<=(B,U) :- resolve(A,B,U), move(A,U,V).

Difference constraints (clingo[dl], routing and scheduling)

% check order

&diff{(A,U)+D}<=(A,V) :- move(A,U,V), edge(U,V,D).

&diff{(A,V)+D}<=(B,U) :- resolve(A,B,U), move(A,U,V), edge(U,V,D).

Torsten Schaub (KRR@UP) ASP in Industry 31 / 43

At work

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP in Industry 32 / 43

At work

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) ASP in Industry 32 / 43

At work

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) ASP in Industry 32 / 43

At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4

Torsten Schaub (KRR@UP) ASP in Industry 33 / 43

At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4

Torsten Schaub (KRR@UP) ASP in Industry 33 / 43

At work

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Challenge Logic programs with elusive theory atoms

Example The atom “&sum{x;-y}<=4” stands for difference
constraint x − y ≤ 4

Torsten Schaub (KRR@UP) ASP in Industry 33 / 43

At work

Open and Closed world reasoning
on numeric domains

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

Torsten Schaub (KRR@UP) ASP in Industry 34 / 43

At work

Open and Closed world reasoning
on numeric domains

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

Torsten Schaub (KRR@UP) ASP in Industry 34 / 43

At work

Open and Closed world reasoning
on numeric domains

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

is monotonic

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

is non-monotonic

Torsten Schaub (KRR@UP) ASP in Industry 34 / 43

At work

Open and Closed world reasoning
on numeric domains

Open world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it takes all possible values

is monotonic

Closed world reasoning

if a variable occurs in true constraints, it is assigned appropriate values
if a variable occurs in no constraint, it is undefined

is non-monotonic

offers defaults, succinctness

Torsten Schaub (KRR@UP) ASP in Industry 34 / 43

At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A

Torsten Schaub (KRR@UP) ASP in Industry 35 / 43

At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A

Torsten Schaub (KRR@UP) ASP in Industry 35 / 43

At work

HTc Syntax

Signature ⟨X ,D,A⟩
X variables
D domain
A atoms

Note The syntax of atoms is left open

Example Atom “x − y ≤ d” with x , y ∈ X and d ∈ D

HTc -formula φ over A

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A

Torsten Schaub (KRR@UP) ASP in Industry 35 / 43

At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP in Industry 36 / 43

At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP in Industry 36 / 43

At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP in Industry 36 / 43

At work

HTc Semantics

Valuation v : X → D ∪ {u}
u /∈ X ∪ D stands for undefined

Set-based representation v ⊆ X ×D
(x , c) ∈ v and (x , d) ∈ v implies c = d
(x , d) /∈ v if v(x) = u

V is the set of all valuations over X and D

Atom denotation J · K : A → 2V

Example

J “x − y ≤ d” K = {v ∈ V | v(x), v(y), d ∈ Z, v(x)− v(y) ≤ d}

Torsten Schaub (KRR@UP) ASP in Industry 36 / 43

At work

HTc-satisfaction

HTc -interpretation over X ,D is a pair ⟨h, t⟩ of valuations over X ,D
such that h ⊆ t

An HTc -interpretation ⟨h, t⟩ satisfies a formula φ, written ⟨h, t⟩ |= φ,
if the following conditions hold

1 ⟨h, t⟩ ̸|= ⊥
2 ⟨h, t⟩ |= a if both h ∈ J a K and t ∈ J a K for a ∈ A
3 ⟨h, t⟩ |= φ ∧ ψ if ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
4 ⟨h, t⟩ |= φ ∨ ψ if ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
5 ⟨h, t⟩ |= φ→ ψ if ⟨h′, t⟩ ̸|= φ or ⟨h′, t⟩ |= ψ

for both h′ = h and h′ = t.

Torsten Schaub (KRR@UP) ASP in Industry 37 / 43

At work

HTc-satisfaction

HTc -interpretation over X ,D is a pair ⟨h, t⟩ of valuations over X ,D
such that h ⊆ t

An HTc -interpretation ⟨h, t⟩ satisfies a formula φ, written ⟨h, t⟩ |= φ,
if the following conditions hold

1 ⟨h, t⟩ ̸|= ⊥
2 ⟨h, t⟩ |= a if both h ∈ J a K and t ∈ J a K for a ∈ A
3 ⟨h, t⟩ |= φ ∧ ψ if ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
4 ⟨h, t⟩ |= φ ∨ ψ if ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
5 ⟨h, t⟩ |= φ→ ψ if ⟨h′, t⟩ ̸|= φ or ⟨h′, t⟩ |= ψ

for both h′ = h and h′ = t.

Torsten Schaub (KRR@UP) ASP in Industry 37 / 43

At work

HTc-equilibrium model

A total interpretation ⟨t, t⟩ is an equilibrium model of
a formula φ, if

1 ⟨t, t⟩ |= φ
2 ⟨h, t⟩ ̸|= φ for all h ⊂ t

t is called an HTc -stable model of φ

Torsten Schaub (KRR@UP) ASP in Industry 38 / 43

At work

HTc-equilibrium model

A total interpretation ⟨t, t⟩ is an equilibrium model of
a formula φ, if

1 ⟨t, t⟩ |= φ
2 ⟨h, t⟩ ̸|= φ for all h ⊂ t

t is called an HTc -stable model of φ

Torsten Schaub (KRR@UP) ASP in Industry 38 / 43

At work

HTc benefits

Semantic framework for ASP modulo theory systems (AMT)
combining closed and open world reasoning

conservative extension of HT
flexibility due to open syntax and denotational semantics
study of AMT systems
study of language fragments
soundness of program transformations
warrant substitution of equivalent expressions
etc.

Torsten Schaub (KRR@UP) ASP in Industry 39 / 43

Omissions

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 40 / 43

Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

Multi-shot solving
Theory solving

Linear Temporal, Dynamic and Metric reasoning

Visualization

Playful? https://potassco.org

Torsten Schaub (KRR@UP) ASP in Industry 41 / 43

https://potassco.org

Omissions

More features of interest

Meta programming

Qualitative and quantitative optimization

Heuristic programming

Application interface programming

Multi-shot solving
Theory solving

Linear Temporal, Dynamic and Metric reasoning

Visualization

Playful? https://potassco.org

Torsten Schaub (KRR@UP) ASP in Industry 41 / 43

https://potassco.org

Recap

Outline

1 Motivation

2 Nutshell

3 Foundation

4 Usage

5 At work

6 Omissions

7 Recap

Torsten Schaub (KRR@UP) ASP in Industry 42 / 43

Recap

Take home message

Torsten Schaub (KRR@UP) ASP in Industry 43 / 43

Recap

Take home message

Modeling + Grounding + Solving

Torsten Schaub (KRR@UP) ASP in Industry 43 / 43

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) ASP in Industry 43 / 43

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

Torsten Schaub (KRR@UP) ASP in Industry 43 / 43

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

Torsten Schaub (KRR@UP) ASP in Industry 43 / 43

https://potassco.org

Recap

Take home message

Modeling + Grounding + Solving

ASP = DB+LP+KR+SMTn

https://potassco.org

And it’s fun !

Torsten Schaub (KRR@UP) ASP in Industry 43 / 43

https://potassco.org

	Motivation
	Nutshell
	Foundation
	Usage
	At work
	Omissions
	Recap

