ASP in Industry, here and there

Torsten Schaub

University of Potsdam & Potassco Solutions GmbH
Outline

1. Motivation
2. Nutshell
3. Foundation
4. Usage
5. At work
6. Omissions
7. Recap
Motivation

Traditional Software

User

Program

Computer

User

Knowledge

Solver
Knowledge-driven Software

User

Program

Computer

User

Knowledge

Solver
What is the benefit?

- Transparency
- Flexibility
- Maintainability
- Reliability

- Generality
- Efficiency
- Optimality
- Availability

Knowledge

Solver

Expert
Motivation

What is the benefit?

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability
+ Generality
+ Efficiency
+ Optimality
+ Availability

Knowledge

Solver

Expert
Motivation

What is the benefit?

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Knowledge

Solver

Expert
Within SIEMENS, constraint technologies have been successfully used for solving configuration problems for more than 25 years. [...] approximately 80 percent of the maintenance costs and more than 60 percent of the development costs for the knowledge representation and reasoning tasks were saved.

Within SIEMENS, constraint technologies have been successfully used for solving configuration problems for more than 25 years. [...] approximately 80 percent of the maintenance costs and more than 60 percent of the development costs for the knowledge representation and reasoning tasks were saved.

Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving
- Where is ASP from?
 - Databases
 - Logic programming
 - Knowledge representation and reasoning
 - Satisfiability solving
Answer Set Programming (ASP)

- What is ASP?
 ASP = DB + LP + KR + SAT!
 ASP is an approach for declarative problem solving

- Where is ASP from?
 - Databases
 - Logic programming
 - Knowledge representation and reasoning
 - Satisfiability solving
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving

- What is ASP good for?
 Solving knowledge-intense combinatorial (optimization) problems
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving

- What is ASP good for?
 Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?
 Problems consisting of (many) decisions and constraints
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving

- What is ASP good for?
 Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?
 Problems consisting of (many) decisions and constraints
 Examples: Sudoku, Configuration, Diagnosis, Music composition, Planning, System design, Time tabling, etc.
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving

- What is ASP good for?
 Solving knowledge-intense combinatorial (optimization) problems

- What problems are this? — And industrial ones?
 Problems consisting of (many) decisions and constraints
 Examples: Sudoku, Configuration, Diagnosis, Music composition, Planning, System design, Time tabling, etc.
What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones?
- Debian, Ubuntu: Linux package configuration
- Exeura: Call routing
- FCC: Radio frequency auction
- Gioia Tauro: Workforce management
- NASA: Decision support for Space Shuttle
- SBB: Train disposition
- Siemens: Partner units configuration
- Variantum: Product configuration
Nutshell

Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving

- What is ASP good for?
 Solving knowledge-intense combinatorial (optimization) problems

- What problems are this? — And industrial ones?
 - Debian, Ubuntu: Linux package configuration
 - Exeura: Call routing
 - **FCC: Radio frequency auction**
 - Gioia Tauro: Workforce management
 - NASA: Decision support for Space Shuttle
 - SBB: Train disposition
 - Siemens: Partner units configuration
 - Variantum: Product configuration
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving.

- What is ASP good for?
 Solving knowledge-intense combinatorial problems.

- What problems are this? — And industry?
 - Debian, Ubuntu: Linux package configuration
 - Exeura: Call routing
 - **FCC: Radio frequency auction**
 - Gioia Tauro: Workforce management
 - NASA: Decision support for Space Shuttle
 - SBB: Train disposition
 - Siemens: Partner units configuration
 - Variantum: Product configuration

Over 13 months in 2016–17 the [US Federal Communications Commission](https://www.fcc.gov) conducted an “incentive auction” to repurpose radio spectrum from broadcast television to wireless internet. In the end, the auction yielded **$19.8 billion**, $10.05 billion of which was paid to 175 broadcasters for voluntarily relinquishing their licenses across 14 UHF channels. Stations that continued broadcasting were assigned potentially new channels to fit as densely as possible into the channels that remained. The government netted more than **$7 billion** (used to pay down the national debt) after covering costs.

A crucial element of the auction design was the construction of a solver, dubbed SATFC, that determined whether sets of stations could be “repacked” in this way; it needed to run every time a station was given a price quote. This
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving

- What is ASP good for?
 Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?
 Problems consisting of (many) decisions and constraints

- What are ASP’s distinguishing features?
 - High level, versatile modeling language
 - High performance solvers
 - Qualitative and quantitative optimization
Answer Set Programming (ASP)

- What is ASP?
 ASP is an approach for declarative problem solving

- What is ASP good for?
 Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?
 Problems consisting of (many) decisions and constraints

- What are ASP’s distinguishing features?
 - High level, versatile modeling language
 - High performance solvers
 - Qualitative and quantitative optimization

- Any industrial impact?
 - ASP Tech companies: DLV Systems and Potassco Solutions
 - Increasing interest in (large) companies
Outline

1. Motivation
2. Nutshell
3. Foundation
4. Usage
5. At work
6. Omissions
7. Recap
Open and Closed world reasoning

- **Open world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it is either true or false

- **Closed world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it becomes false
Open and Closed world reasoning

- **Open world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it is either true or false

- **Closed world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it becomes false
Open and Closed world reasoning

- **Open world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it is either true or false
 - is monotonic

- **Closed world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it becomes false
 - is non-monotonic
Open and Closed world reasoning

- **Open world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it is either true or false
 - is monotonic

- **Closed world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it becomes false
 - is non-monotonic

offers defaults, reachability, succinctness
Open and Closed world reasoning

- **Open world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it is either true or false
 - is monotonic

- **Closed world reasoning**
 - if a statement is true, it remains true
 - if a statement is false, it remains false
 - if a statement is unknown, it becomes false
 - is non-monotonic
 - offers defaults, reachability, succinctness

- **ASP offers both open and closed world reasoning**
 - by using stable model semantics
Logic programs

- A logic program, P, over a set A of atoms is a finite set of rules.
- A rule is of the form

$$a_0 : - a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n.$$

where $0 \leq m \leq n$ and each $a_i \in A$ is an atom for $0 \leq i \leq n$.

Torsten Schaub (KRR@UP)
A logic program, P, over a set A of atoms is a finite set of rules.

A rule is of the form

$$a_0 \leftarrow a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n.$$

where $0 \leq m \leq n$ and each $a_i \in A$ is an atom for $0 \leq i \leq n$.

where 0 \leq m \leq n and each a_i \in A is an atom for 0 \leq i \leq n
A logic program, \(P \), over a set \(A \) of atoms is a finite set of rules. A rule is of the form

\[a_0 : - a_1, \ldots, a_m, \text{ not } a_{m+1}, \ldots, \text{ not } a_n. \]

where \(0 \leq m \leq n \) and each \(a_i \in A \) is an atom for \(0 \leq i \leq n \).
Logic programs

- A logic program, P, over a set A of atoms is a finite set of rules

- A rule is of the form

 $$a_0 : - a_1, \ldots, a_m, \text{ not } a_{m+1}, \ldots, \text{ not } a_n.$$

 where $0 \leq m \leq n$ and each $a_i \in A$ is an atom for $0 \leq i \leq n$

- Semantics given by stable models, informally, models of P justifying each true atom by a proof
Logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules.

- A rule is of the form

 $$a_0 : - a_1, \ldots, a_m, \text{not } a_{m+1}, \ldots, \text{not } a_n.$$

 where $0 \leq m \leq n$ and each $a_i \in \mathcal{A}$ is an atom for $0 \leq i \leq n$.

- Semantics given by stable models, informally, models of P justifying each true atom by a proof.

 Minimal models in the logic HT (Heyting’30) / G3 (Gödel’32)
Open and Closed world reasoning
by example

- **Alphabet** \{a, b\}

- The rule
 - a

 has the
 - models \{a\}, \{a, b\}
 - minimal models \{a\}
 - stable models \{a\}
Open and Closed world reasoning
by example

- Alphabet \(\{a, b\} \)
- The fact
 - \(a \)
 - has the
 - models \(\{a\}, \{a, b\} \)
 - minimal models \(\{a\} \)
 - stable models \(\{a\} \)
Open and Closed world reasoning
by example

- Alphabet \{a, b\}
- The rule
 - \neg b \rightarrow a
 - has the
 - models \{a\}, \{b\}, \{a, b\}
 - minimal models \{a\}, \{b\}
 - stable models \{a\}
The logic of Here-and-There (HT)

- **Formula**: \(\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \)

- **Interpretation**: A pair \(\langle H, T \rangle \) of sets of atoms with \(H \subseteq T \)
 - \(H \) is called “here” and
 - \(T \) is called “there”

- **Note**: \(\langle H, T \rangle \) is a simplified Kripke structure

- **Intuition**
 - \(H \) represents provably true atoms
 - \(T \) represents possibly true atoms
 - atoms not in \(T \) are false

- **Idea**
 - \(\langle H, T \rangle \models \varphi \sim \varphi \) is provably true
 - \(\langle T, T \rangle \models \varphi \sim \varphi \) is possibly true (ie, classically true)
The logic of Here-and-There (HT)

- Formula \(\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \)

- Interpretation A pair \(\langle H, T \rangle \) of sets of atoms with \(H \subseteq T \)

 - \(H \) is called “here” and
 - \(T \) is called “there”

- Note \(\langle H, T \rangle \) is a simplified Kripke structure

- Intuition

 - \(H \) represents provably true atoms
 - \(T \) represents possibly true atoms
 - atoms not in \(T \) are false

- Idea

 - \(\langle H, T \rangle \models \varphi \sim \varphi \) is provably true
 - \(\langle T, T \rangle \models \varphi \sim \varphi \) is possibly true (ie, classically true)
The logic of Here-and-There (HT)

- **Formula** \(\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \)

- **Interpretation** A pair \(\langle H, T \rangle \) of sets of atoms with \(H \subseteq T \)
 - \(H \) is called “here” and
 - \(T \) is called “there”

- **Note** \(\langle H, T \rangle \) is a simplified Kripke structure

- **Intuition**
 - \(H \) represents provably true atoms
 - \(T \) represents possibly true atoms
 - atoms not in \(T \) are false

- **Idea**
 - \(\langle H, T \rangle \models \varphi \sim \varphi \) is provably true
 - \(\langle T, T \rangle \models \varphi \sim \varphi \) is possibly true (i.e., classically true)
The logic of Here-and-There (HT)

- **Formula** \(\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \)

- **Interpretation** A pair \(\langle H, T \rangle \) of sets of atoms with \(H \subseteq T \)
 - \(H \) is called “here” and
 - \(T \) is called “there”

- **Note** \(\langle H, T \rangle \) is a simplified Kripke structure

- **Intuition**
 - \(H \) represents provably true atoms
 - \(T \) represents possibly true atoms
 - atoms not in \(T \) are false

- **Idea**
 - \(\langle H, T \rangle \models \varphi \sim \varphi \) is provably true
 - \(\langle T, T \rangle \models \varphi \sim \varphi \) is possibly true (ie, classically true)
The logic of Here-and-There (HT)

- **Formula** \(\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \)

- **Interpretation** A pair \(\langle H, T \rangle \) of sets of atoms with \(H \subseteq T \)
 - \(H \) is called “here” and
 - \(T \) is called “there”

- **Note** \(\langle H, T \rangle \) is a simplified Kripke structure

- **Intuition**
 - \(H \) represents provably true atoms
 - \(T \) represents possibly true atoms
 - atoms not in \(T \) are false

- **Idea**
 - \(\langle H, T \rangle \models \varphi \sim \varphi \) is provably true
 - \(\langle T, T \rangle \models \varphi \sim \varphi \) is possibly true (ie, classically true)
The logic of Here-and-There (HT)

- **Formula** \(\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \)

- **Interpretation** A pair \(\langle H, T \rangle \) of sets of atoms with \(H \subseteq T \)
 - \(H \) is called “here” and
 - \(T \) is called “there”

- **Note** \(\langle H, T \rangle \) is a simplified Kripke structure

- **Intuition**
 - \(H \) represents provably true atoms
 - \(T \) represents possibly true atoms
 - atoms not in \(T \) are false

- **Idea**
 - \(\langle H, T \rangle \models \varphi \sim \varphi \) is provably true
 - \(\langle T, T \rangle \models \varphi \sim \varphi \) is possibly true (ie, classically true)
Satisfaction

- $\langle H, T \rangle \models a$ if $a \in H$
- $\langle H, T \rangle \models \varphi \land \psi$ if $\langle H, T \rangle \models \varphi$ and $\langle H, T \rangle \models \psi$
- $\langle H, T \rangle \models \varphi \lor \psi$ if $\langle H, T \rangle \models \varphi$ or $\langle H, T \rangle \models \psi$
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if $\langle X, T \rangle \models \varphi$ implies $\langle X, T \rangle \models \psi$ for both $X = H, T$

Note: $\langle H, T \rangle \models \neg \varphi$ if $\langle T, T \rangle \not\models \varphi$ since $\neg \varphi = \varphi \rightarrow \bot$

An interpretation $\langle H, T \rangle$ is a model of φ, if $\langle H, T \rangle \models \varphi$
Satisfaction

- $\langle H, T \rangle \models a$ if $a \in H$
- $\langle H, T \rangle \models \varphi \land \psi$ if $\langle H, T \rangle \models \varphi$ and $\langle H, T \rangle \models \psi$
- $\langle H, T \rangle \models \varphi \lor \psi$ if $\langle H, T \rangle \models \varphi$ or $\langle H, T \rangle \models \psi$
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if $\langle X, T \rangle \models \varphi$ implies $\langle X, T \rangle \models \psi$ for both $X = H, T$

- Note $\langle H, T \rangle \models \neg \varphi$ if $\langle T, T \rangle \not\models \varphi$ since $\neg \varphi = \varphi \rightarrow \bot$

- An interpretation $\langle H, T \rangle$ is a model of φ, if $\langle H, T \rangle \models \varphi$
Satisfaction

- $\langle H, T \rangle \models a$ if $a \in H$
- $\langle H, T \rangle \models \varphi \land \psi$ if $\langle H, T \rangle \models \varphi$ and $\langle H, T \rangle \models \psi$
- $\langle H, T \rangle \models \varphi \lor \psi$ if $\langle H, T \rangle \models \varphi$ or $\langle H, T \rangle \models \psi$
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if $\langle X, T \rangle \models \varphi$ implies $\langle X, T \rangle \models \psi$ for both $X = H, T$

- Note $\langle H, T \rangle \models \neg \varphi$ if $\langle T, T \rangle \not\models \varphi$ since $\neg \varphi = \varphi \rightarrow \bot$

An interpretation $\langle H, T \rangle$ is a model of φ, if $\langle H, T \rangle \models \varphi$
Satisfaction

- \(\langle H, T \rangle \models a \) if \(a \in H \)
- \(\langle H, T \rangle \models \varphi \land \psi \) if \(\langle H, T \rangle \models \varphi \) and \(\langle H, T \rangle \models \psi \)
- \(\langle H, T \rangle \models \varphi \lor \psi \) if \(\langle H, T \rangle \models \varphi \) or \(\langle H, T \rangle \models \psi \)
- \(\langle H, T \rangle \models \varphi \rightarrow \psi \) if \(\langle X, T \rangle \models \varphi \) implies \(\langle X, T \rangle \models \psi \)
 for both \(X = H, T \)

- Note \(\langle H, T \rangle \models \neg \varphi \) if \(\langle T, T \rangle \not\models \varphi \)
 since \(\neg \varphi = \varphi \rightarrow \bot \)

- An interpretation \(\langle H, T \rangle \) is a model of \(\varphi \), if \(\langle H, T \rangle \models \varphi \)
Tautologies

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
<td>a</td>
<td>$\neg a$</td>
<td>$a \lor \neg a$</td>
<td>$\neg a$</td>
<td>$\neg a \lor a$</td>
</tr>
<tr>
<td>${a}$</td>
<td>${a}$</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\emptyset</td>
<td>${a}$</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Tautologies

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>a</th>
<th>$\neg a$</th>
<th>$a \lor \neg a$</th>
<th>$\neg a$</th>
<th>$\neg a \lor \neg a$</th>
<th>$a \iff \neg a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${a}$</td>
<td>${a}$</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\emptyset</td>
<td>${a}$</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
A total interpretation \(\langle T, T \rangle \) is an equilibrium model of a formula \(\varphi \), if

1. \(\langle T, T \rangle \models \varphi \)
2. \(\langle H, T \rangle \not\models \varphi \) for all \(H \subset T \)

- \(T \) is called a stable model of \(\varphi \)

Note

- \(\langle T, T \rangle \) acts as a classical model
- \(\langle H, T \rangle \models P \) iff \(H \models P^T \) \((P^T \) is the reduct of \(P \) by \(T \))
A total interpretation $\langle T, T \rangle$ is an equilibrium model of a formula φ, if

1. $\langle T, T \rangle \models \varphi$
2. $\langle H, T \rangle \not\models \varphi$ for all $H \subset T$

T is called a stable model of φ.

Note

- $\langle T, T \rangle$ acts as a classical model
- $\langle H, T \rangle \models P$ iff $H \models P^T$ (where P^T is the reduct of P by T)
A total interpretation \(\langle T, T \rangle \) is an equilibrium model of a formula \(\varphi \), if

1. \(\langle T, T \rangle \models \varphi \)
2. \(\langle H, T \rangle \not\models \varphi \) for all \(H \subset T \)

\(T \) is called a stable model of \(\varphi \)

Note

- \(\langle T, T \rangle \) acts as a classical model
- \(\langle H, T \rangle \models P \) iff \(H \models P^T \) \((P^T \) is the reduct of \(P \) by \(T \))
Modeling, grounding, and solving

- Problem
- Logic Program
- Grounder
- Solver
- Stable Models
- Solution

Modeling: Grounder
Solving: Stable Models
Interpreting: Solution

Torsten Schaub (KRR@UP)
ASP in Industry
Language constructs

- **Facts**
 - `q(42).`

- **Rules**
 - `p(X) :- q(X), not r(X).`

- **Conditional literals**
 - `p :- q(X) : r(X).`

- **Disjunction**
 - `p(X) ; q(X) :- r(X).`

- **Integrity constraints**
 - `:- q(X), p(X).`

- **Choice**
 - `2 { p(X,Y) : q(X) } 7 :- r(Y).`

- **Aggregates**
 - `s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7.`

- **Multi-objective optimization**
 - `:~ q(X), p(X,C). [C]
 #minimize { C : q(X), p(X,C) }`
The traveling salesperson problem (TSP)

- **Problem Instance** A set of cities and distances among them, or simply a weighted graph

- **Problem Class** What is the shortest possible route visiting each city once and returning to the city of origin?

Note

- TSP extends the Hamiltonian cycle problem: Is there a cycle in a graph visiting each node exactly once

- TSP is relevant to applications in logistics, planning, chip design, and the core of the vehicle routing problem
The traveling salesperson problem (TSP)

- **Problem Instance** A set of cities and distances among them, or simply a weighted graph
- **Problem Class** What is the shortest possible route visiting each city once and returning to the city of origin?
- **Note**
 - TSP extends the Hamiltonian cycle problem: Is there a cycle in a graph visiting each node exactly once
 - TSP is relevant to applications in logistics, planning, chip design, and the core of the vehicle routing problem
Traveling salesperson
Problem instance, cities.lp

start(a).

city(a). city(b). city(c). city(d).

road(a,b,10). road(b,c,20). road(c,d,25). road(d,a,40).
road(b,d,30). road(d,c,25). road(c,a,35).
Traveling salesperson
Problem encoding, tsp.lp

\{ \text{travel}(X,Y) \} :- \text{road}(X,Y,_).

\text{visited}(Y) :- \text{travel}(X,Y), \text{start}(X).
\text{visited}(Y) :- \text{travel}(X,Y), \text{visited}(X).

:- \text{city}(X), \text{not} \\text{visited}(X).

:- \text{city}(X), 2 \{ \text{travel}(X,Y) \}.
:- \text{city}(X), 2 \{ \text{travel}(Y,X) \}.
Traveling salesperson
Problem encoding, tsp.lp

\[
\{ \text{travel}(X,Y) \} :- \text{road}(X,Y,_).
\]

\[
\text{visited}(Y) :- \text{travel}(X,Y), \text{start}(X).
\]

\[
\text{visited}(Y) :- \text{travel}(X,Y), \text{visited}(X).
\]

\[
:- \text{city}(X), \text{not} \ \text{visited}(X).
\]

\[
:- \text{city}(X), 2 \ {\{ \text{travel}(X,Y) \}}.
\]

\[
:- \text{city}(X), 2 \ {\{ \text{travel}(Y,X) \}}.
\]

\[
\sim \text{travel}(X,Y), \text{road}(X,Y,D). [D,X,Y]
\]
Running salesperson

$ clingo tsp.lp cities.lp
clingo version 5.3.1
Reading...
Solving...
Answer: 1
start(a) [...]
road(c,a,35)
travel(a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100
Answer: 2
start(a) [...]
road(c,a,35)
travel(a,b) travel(b,c) travel(c,d) travel(d,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 95
OPTIMUM FOUND

Models : 2
 Optimum : yes
Optimization : 95
Calls : 1
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.002s
$ clingo tsp.lp cities.lp
clingo version 5.3.1
Reading...
Solving...
Answer: 1
start(a) [...] road(c,a,35)
travel(a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100
Answer: 2
start(a) [...] road(c,a,35)
travel(a,b) travel(b,c) travel(c,d) travel(d,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 95
OPTIMUM FOUND

Models : 2
 Optimum : yes
Optimization : 95
Calls : 1
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.002s
Running salesperson

$ clingo tsp.lp cities.lp
clingo version 5.3.1
Reading...
Solving...
Answer: 1
start(a) [...]
road(c,a,35)
travel(a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100
Answer: 2
start(a) [...]
road(c,a,35)
travel(a,b) travel(b,c) travel(c,d) travel(d,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 95
OPTIMUM FOUND

Models : 2
 Optimum : yes
Optimization : 95
Calls : 1
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.002s
Running salesperson

$ clingo tsp.lp cities.lp
clingo version 5.3.1
Reading...
Solving...
Answer: 1
start(a) [...] road(c,a,35)
travel(a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100
Answer: 2
start(a) [...] road(c,a,35)
travel(a,b) travel(b,c) travel(c,d) travel(d,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 95
OPTIMUM FOUND

Models : 2
 Optimum : yes
Optimization : 95
Calls : 1
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.002s
Running salesperson

$ clingo tsp.lp cities.lp
clingo version 5.3.1
Reading...
Solving...
Answer: 1
start(a) [...] road(c,a,35)
travel(a,b) travel(b,d) travel(d,c) travel(c,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 100
Answer: 2
start(a) [...] road(c,a,35)
travel(a,b) travel(b,c) travel(c,d) travel(d,a)
visited(b) visited(c) visited(d) visited(a)
Optimization: 95
OPTIMUM FOUND

Models : 2
 Optimum : yes
Optimization : 95
Calls : 1
Time : 0.005s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.002s
Outline

1. Motivation
2. Nutshell
3. Foundation
4. Usage
5. At work
6. Omissions
7. Recap
Routing and scheduling

Applications

- **Routing**
 - multi-agent path finding
 - phylogenetic inference
 - wire routing
 - etc

- **Routing and Scheduling**
 - train scheduling
 - embedded system design
 - warehouse robotics
 - etc

- **Techniques**
 - index variables by time steps
 - view time as an order on variables
Routing and scheduling

Applications

- **Routing**
 - multi-agent path finding
 - phylogenetic inference
 - wire routing
 - etc

- **Routing and Scheduling**
 - train scheduling
 - embedded system design
 - warehouse robotics
 - etc

- **Techniques**
 - index variables by time steps
 - view time as an order on variables
Routing and scheduling

Applications

- **Routing**
 - multi-agent path finding
 - phylogenetic inference
 - wire routing
 - etc

- **Routing and Scheduling**
 - train scheduling
 - embedded system design
 - warehouse robotics
 - etc

- **Techniques**
 - index variables by time steps
 - view time as an order on variables
Routing and scheduling

Applications

- **Routing**
 - multi-agent path finding
 - phylogenetic inference
 - wire routing
 - etc

- **Routing and Scheduling**
 - train scheduling
 - embedded system design
 - warehouse robotics
 - etc

- **Techniques**
 - index variables by time steps
 - view time as an order on variables
Routing and scheduling

Applications

- Routing
 - multi-agent path finding
 - phylogenetic inference
 - wire routing
 - etc

- Routing and Scheduling
 - train scheduling
 - embedded system design
 - warehouse robotics
 - etc

- Techniques
 - index variables by time steps
 - view time as an order on variables
Multi-agent path finding

- **Problem** Find (optimal) collision-free paths for a group of agents from their location to an (assigned) target.

- **Example**
Multi-agent path finding

- **Problem**: Find (optimal) collision-free paths for a group of agents from their location to an (assigned) target

- **Example**
Multi-agent path finding

- **Problem** Find (optimal) collision-free paths for a group of agents from their location to an (assigned) target

- **Example**
Timestep-based routing

No scheduling yet

% guess moves
\{ \text{move}(A,U,V,T) : \text{edge}(U,V) \} \leq 1 \ :- \ \text{agent}(A), T=1..n.

% infer agent positions
\text{at}(A,U,0) :- \text{start}(A,U).
\text{at}(A,V,T) :- \text{move}(A,_,V,T), T=1..n.
\text{at}(A,U,T) :- \text{at}(A,U,T-1), \text{not} \ \text{move}(A,U,_,T), T=1..n.

% ensure path-like strolls
:- \text{move}(A,U,_,T), \text{not} \ \text{at}(A,U,T-1).
:- \text{goal}(A,U), \text{not} \ \text{at}(A,U,n).

% handle vertex/swap/follow conflicts
:- \{ \text{at}(A,U,T) \} > 1, \text{vertex}(U), T=0..n.
:- \text{move}(_,U,V,T), \text{move}(_,V,U,T).
:- \text{at}(A,U,T), \text{at}(B,U,T+1), A!=B, m=fc.

% ensure unique agent positions (redundant/for performance)
:- \{ \text{at}(A,U,T) \} \neq 1, \text{agent}(A), T=1..n.
Timestep-based to -free routing
in view of scheduling

- Idea \(\text{move}(A, U, V, T) \leadsto \text{move}(A, U, V) \)

- Pros
 - no timesteps
 - no explicit bound

- Cons
 - no cyclic (parts of) trajectories
Timestep-free routing, part I

No scheduling yet

% generate moves with in and out degrees of one
{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(V).
{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(U).

:- move(A,U,_), not start(A,U), not move(A,_,_).
:- move(A,_,U), not goal(A,U), not move(A,U,_).

% fix in and out degrees of start and goal vertices
:- start(A,U), move(A,_,U).
:- goal(A,U), move(A,U,_).

:- start(A,U), not goal(A,U), not move(A,U,_).
:- goal(A,U), not start(A,U), not move(A,_,U).
Timestep-free routing, part I

No scheduling yet

\%
\% generate moves with in and out degrees of one
\{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(V).
\{ move(A,U,V): edge(U,V) } <= 1 :- agent(A), vertex(U).

:- move(A,U,_), not start(A,U), not move(A,_,U).
:- move(A,_,U), not goal(A,U), not move(A,U,_).

\%
\% fix in and out degrees of start and goal vertices
:- start(A,U), move(A,_,U).
:- goal(A,U), move(A,U,_).

:- start(A,U), not goal(A,U), not move(A,U,_).
:- goal(A,U), not start(A,U), not move(A,_,U).
Timestep-free routing, part II

No scheduling yet

% generate order considering conflict positions
resolve(A,B,U) :- start(A,U), move(B,_,U), A!=B.
resolve(A,B,U) :- goal(B,U), move(A,_,U), A!=B.

{ resolve(A,B,U);
 resolve(B,A,U) } >= 1 :- move(A,_,U), move(B,_,U), A<B.

% discard invalid orders
:- resolve(A,B,U), resolve(B,A,U).

Torsten Schaub (KRR@UP)
Timestep-free routing, part III

No scheduling yet

- **Acyclicity constraints**

  ```prolog
  % check order
  ```

- **Difference constraints**

  ```prolog
  % check order
  &diff{(A,V)+1}<= (B,U) :- resolve(A,B,U), move(A,U,V).
  ```

- **Difference constraints**

  ```prolog
  % check order
  ```
Timestep-free routing, part III

No scheduling yet

■ Acyclicity constraints \((\text{clingo})\)

\[
\begin{align*}
\% \text{ check order} \\
\#\text{edge } ((A,U),(A,V)) & : \text{move}(A,U,V). \\
\#\text{edge } ((A,V),(B,U)) & : \text{resolve}(A,B,U), \text{move}(A,U,V).
\end{align*}
\]

■ Difference constraints \((\text{clingo}[DL])\)

\[
\begin{align*}
\% \text{ check order} \\
&\text{diff\{}(A,U)+1\text{\}}\leq(A,V) \text{ :- move}(A,U,V). \\
&\text{diff\{}(A,V)+1\text{\}}\leq(B,U) \text{ :- resolve}(A,B,U), \text{move}(A,U,V).
\end{align*}
\]

■ Difference constraints

\[
\begin{align*}
\% \text{ check order} \\
&\text{diff\{}(A,U)+D\text{\}}\leq(A,V) \text{ :- move}(A,U,V), \text{edge}(U,V,D). \\
&\text{diff\{}(A,V)+D\text{\}}\leq(B,U) \text{ :- resolve}(A,B,U), \text{move}(A,U,V), \text{edge}(U,V,D).
\end{align*}
\]
Timestep-free routing and scheduling, III

- **Acyclicity constraints** (*clingo*, routing only)

  ```prolog
  % check order
  ```

- **Difference constraints** (*clingo*[DL]*, routing only)

  ```prolog
  % check order
  ```

- **Difference constraints** (*clingo*[DL]*, routing and scheduling)

  ```prolog
  % check order
  ```
ASP solving process
ASP solving process *modulo* theories

- Problem
- Logic Program
- Grounding
- Solver
- Stable Models
- Solution
- Interpreting

Modeling → Grounding → Solver → Stable Models

Solving
ASP solving process modulo theories

Modeling

Problem

Logic Program

Grounder

Solver

Solving

Stable Models

Interpreting

Solution
Clingo’s approach

- **Challenge**: Logic programs with elusive theory atoms
- **Example**: The atom "&sum{x; -y} <= 4" stands for difference constraint x − y ≤ 4
clingo’s approach

Challenge: Logic programs with elusive theory atoms

Example: The atom "\&sum\{x; -y\} \leq 4" stands for difference constraint $x - y \leq 4$
clingo’s approach

- **Theory T Grammar**
- **T-ASP Program**
- **gringo T**
- **clasp T**
- **T-ASP Solution**

Challenge Logic programs with elusive theory atoms

Example The atom
\[\sum \{x; -y\} \leq 4 \]
stands for difference constraint \(x - y \leq 4 \)
Open and Closed world reasoning
on numeric domains

- **Open world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it takes all possible values

- **Closed world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it is undefined
Open and Closed world reasoning
on numeric domains

- **Open world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it takes all possible values

- **Closed world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it is undefined
Open and Closed world reasoning on numeric domains

- **Open world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it takes all possible values

 is monotonic

- **Closed world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it is undefined

 is non-monotonic
Open and Closed world reasoning

on numeric domains

- **Open world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it takes all possible values
 - is monotonic

- **Closed world reasoning**
 - if a variable occurs in true constraints, it is assigned appropriate values
 - if a variable occurs in no constraint, it is undefined
 - is non-monotonic

offers defaults, succinctness
HTₐ Syntax

- Signature $\langle \mathcal{X}, \mathcal{D}, \mathcal{A} \rangle$
 - \mathcal{X} variables
 - \mathcal{D} domain
 - \mathcal{A} atoms

- Note: The syntax of atoms is left open

- Example: Atom “$x - y \leq d$” with $x, y \in \mathcal{X}$ and $d \in \mathcal{D}$

- HTₐ-formula φ over \mathcal{A}

$$\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \quad \text{where } a \in \mathcal{A}$$
HT$_c$ Syntax

- Signature $\langle \mathcal{X}, \mathcal{D}, \mathcal{A} \rangle$
 - \mathcal{X} variables
 - \mathcal{D} domain
 - \mathcal{A} atoms

- Note The syntax of atoms is left open

- Example Atom “$x - y \leq d$” with $x, y \in \mathcal{X}$ and $d \in \mathcal{D}$

- HT$_c$-formula φ over \mathcal{A}

$$\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \quad \text{where } a \in \mathcal{A}$$
HT$_c$ Syntax

- **Signature** $\langle \mathcal{X}, D, A \rangle$
 - \mathcal{X} variables
 - D domain
 - A atoms

- **Note** The syntax of atoms is left open

- **Example** Atom “$x - y \leq d$” with $x, y \in \mathcal{X}$ and $d \in D$

- **HT$_c$-formula** φ over A

\[
\varphi ::= \bot \mid a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \quad \text{where } a \in A
\]
Valuation \(\nu : \mathcal{X} \rightarrow \mathcal{D} \cup \{u\} \)
- \(u \notin \mathcal{X} \cup \mathcal{D} \) stands for undefined

Set-based representation \(\nu \subseteq \mathcal{X} \times \mathcal{D} \)
- \((x, c) \in \nu \) and \((x, d) \in \nu \) implies \(c = d \)
- \((x, d) \notin \nu \) if \(\nu(x) = u \)

\(\mathcal{V} \) is the set of all valuations over \(\mathcal{X} \) and \(\mathcal{D} \)

Atom denotation \([\cdot] : \mathcal{A} \rightarrow 2^\mathcal{V} \)

Example

\[
[\text{"x - y \leq d"}] = \{ \nu \in \mathcal{V} | \nu(x), \nu(y), d \in \mathbb{Z}, \nu(x) - \nu(y) \leq d \}
\]
Valuation \(\nu : \mathcal{X} \rightarrow \mathcal{D} \cup \{u\} \)
- \(u \notin \mathcal{X} \cup \mathcal{D}\) stands for undefined

Set-based representation \(\nu \subseteq \mathcal{X} \times \mathcal{D} \)
- \((x, c) \in \nu\) and \((x, d) \in \nu\) implies \(c = d\)
- \((x, d) \notin \nu\) if \(\nu(x) = u\)

\(\mathcal{V}\) is the set of all valuations over \(\mathcal{X}\) and \(\mathcal{D}\)

Atom denotation \(\llbracket \cdot \rrbracket : \mathcal{A} \rightarrow 2^\mathcal{V}\)

Example
\[
\llbracket \text{“}x - y \leq d\text{”} \rrbracket = \{\nu \in \mathcal{V} \mid \nu(x), \nu(y), d \in \mathbb{Z}, \ \nu(x) - \nu(y) \leq d\}\]
At work

HT\(_c\) Semantics

- Valuation \(\nu : \mathcal{X} \to \mathcal{D} \cup \{u\} \)
 - \(u \notin \mathcal{X} \cup \mathcal{D} \) stands for undefined

Set-based representation \(\nu \subseteq \mathcal{X} \times \mathcal{D} \)
- \((x, c) \in \nu\) and \((x, d) \in \nu\) implies \(c = d\)
- \((x, d) \notin \nu\) if \(\nu(x) = u\)

\(\mathcal{V}\) is the set of all valuations over \(\mathcal{X}\) and \(\mathcal{D}\)

- Atom denotation \(\llbracket \cdot \rrbracket : \mathcal{A} \to 2^\mathcal{V}\)
- Example

\[
\llbracket "x - y \leq d" \rrbracket = \{\nu \in \mathcal{V} \mid \nu(x), \nu(y), d \in \mathbb{Z}, \nu(x) - \nu(y) \leq d\}
\]
HT_c Semantics

- Valuation \(v : \mathcal{X} \rightarrow \mathcal{D} \cup \{\mathbf{u}\} \)
 - \(\mathbf{u} \notin \mathcal{X} \cup \mathcal{D} \) stands for undefined
- Set-based representation \(v \subseteq \mathcal{X} \times \mathcal{D} \)
 - \((x, c) \in v \) and \((x, d) \in v \) implies \(c = d \)
 - \((x, d) \notin v \) if \(v(x) = \mathbf{u} \)

\(\mathcal{V} \) is the set of all valuations over \(\mathcal{X} \) and \(\mathcal{D} \)

- Atom denotation \([\cdot] : A \rightarrow 2^\mathcal{V} \)
- Example

\[
["x - y \leq d"] = \{ v \in \mathcal{V} \mid v(x), v(y), d \in \mathbb{Z}, v(x) - v(y) \leq d \}
\]
HT_c-satisfaction

- **HT_c-interpretation** over \(\mathcal{X}, \mathcal{D} \) is a pair \(\langle h, t \rangle \) of valuations over \(\mathcal{X}, \mathcal{D} \) such that \(h \subseteq t \)

- An HT_c-interpretation \(\langle h, t \rangle \) satisfies a formula \(\varphi \), written \(\langle h, t \rangle \models \varphi \), if the following conditions hold:
 1. \(\langle h, t \rangle \not\models \bot \)
 2. \(\langle h, t \rangle \models a \) if both \(h \in \llbracket a \rrbracket \) and \(t \in \llbracket a \rrbracket \) for \(a \in A \)
 3. \(\langle h, t \rangle \models \varphi \land \psi \) if \(\langle h, t \rangle \models \varphi \) and \(\langle h, t \rangle \models \psi \)
 4. \(\langle h, t \rangle \models \varphi \lor \psi \) if \(\langle h, t \rangle \models \varphi \) or \(\langle h, t \rangle \models \psi \)
 5. \(\langle h, t \rangle \models \varphi \rightarrow \psi \) if \(\langle h', t \rangle \not\models \varphi \) or \(\langle h', t \rangle \models \psi \)
 for both \(h' = h \) and \(h' = t \).
HT\textsubscript{c}-satisfaction

- **HT\textsubscript{c}-interpretation** over \mathcal{X}, \mathcal{D} is a pair $\langle h, t \rangle$ of valuations over \mathcal{X}, \mathcal{D} such that $h \subseteq t$.

- An HT\textsubscript{c}-interpretation $\langle h, t \rangle$ satisfies a formula φ, written $\langle h, t \rangle \models \varphi$, if the following conditions hold:
 1. $\langle h, t \rangle \not\models \bot$
 2. $\langle h, t \rangle \models a$ if both $h \in \llbracket a \rrbracket$ and $t \in \llbracket a \rrbracket$ for $a \in A$.
 3. $\langle h, t \rangle \models \varphi \land \psi$ if $\langle h, t \rangle \models \varphi$ and $\langle h, t \rangle \models \psi$.
 4. $\langle h, t \rangle \models \varphi \lor \psi$ if $\langle h, t \rangle \models \varphi$ or $\langle h, t \rangle \models \psi$.
 5. $\langle h, t \rangle \models \varphi \rightarrow \psi$ if $\langle h', t \rangle \not\models \varphi$ or $\langle h', t \rangle \models \psi$ for both $h' = h$ and $h' = t$.

Potassco
HT$_c$-equilibrium model

- A total interpretation $\langle t, t \rangle$ is an equilibrium model of a formula φ, if

 1. $\langle t, t \rangle \models \varphi$
 2. $\langle h, t \rangle \not\models \varphi$ for all $h \subset t$

- t is called an HT$_c$-stable model of φ
HT\(_c\)-equilibrium model

- A total interpretation \(\langle t, t \rangle \) is an equilibrium model of a formula \(\varphi \), if

 1. \(\langle t, t \rangle \models \varphi \)
 2. \(\langle h, t \rangle \not\models \varphi \) for all \(h \subset t \)

- \(t \) is called an HT\(_c\)-stable model of \(\varphi \)
HT\textsubscript{c} benefits

- Semantic framework for ASP modulo theory systems (AMT) combining closed and open world reasoning
 - conservative extension of HT
 - flexibility due to open syntax and denotational semantics
 - study of AMT systems
 - study of language fragments
 - soundness of program transformations
 - warrant substitution of equivalent expressions
 - etc.
Outline

1. Motivation
2. Nutshell
3. Foundation
4. Usage
5. At work
6. Omissions
7. Recap
More features of interest

- Meta programming
- Qualitative and quantitative optimization
- Heuristic programming
- Application interface programming
 - Multi-shot solving
 - Theory solving
- Linear Temporal, Dynamic and Metric reasoning
- Visualization

Playful? https://potassco.org
More features of interest

- Meta programming
- Qualitative and quantitative optimization
- Heuristic programming
- Application interface programming
 - Multi-shot solving
 - Theory solving
- Linear Temporal, Dynamic and Metric reasoning
- Visualization

- Playful? https://potassco.org
Outline

1. Motivation
2. Nutshell
3. Foundation
4. Usage
5. At work
6. Omissions
7. Recap
Take home message
Take home message

Modeling + Grounding + Solving
Take home message

Modeling + Grounding + Solving

\[
\text{ASP} = \text{DB} + \text{LP} + \text{KR} + \text{SAT}
\]
Take home message

Modeling + Grounding + Solving

ASP = DB + LP + KR + SMT^n
Take home message

Modeling + Grounding + Solving

\[\text{ASP} = \text{DB} + \text{LP} + \text{KR} + \text{SMT}^n \]

https://potassco.org
Take home message

Modeling + Grounding + Solving

\[
\text{ASP} = \text{DB} + \text{LP} + \text{KR} + \text{SMT}^n
\]

https://potassco.org

And it’s fun!