
1/42

Knowledge Representation in the Languages of
Logic Programs under Answer Set Semantics.

Michael Gelfond

September, 2023

Michael Gelfond KR2023



2/42

Introduction

My original interest in KR started with attempts to

Achieve better understanding of the human mind and
structure of the universe by discovery, refinement, and
formalization of the basic categories of our language and
thought.

Develop a good methodology for the design and
implementation of transparent and elaboration tolerant
software systems.

Michael Gelfond KR2023



3/42

In my view the most basic of these categories is that of

Rational Belief.

This view contributed substantially to the development of
knowledge representation language Answer Set Prolog (ASP)
and its extensions including

ASP with sorts, sets and aggregates

ASP capable of representing rare events

ASP capable of representing random events and their
probabilities

Constraint ASP

Causal ASP

Michael Gelfond KR2023



4/42

A theory in an ASP based language defines possible collections
of beliefs of the rational agent associated with this theory.

Such a collection, called an answer set, consists of literals
satisfying

the axioms of the theory and

the Rationality Principle which prohibits the agent from
believing things he is not forced to believe.

Michael Gelfond KR2023



5/42

As an example, consider an ASP program consisting of a rule

p(0)← q(0).

and two facts
q(0). ¬p(1).

The answer set of this program is

{q(0), p(0), ¬p(1)}

The agent associated with the program believes q(0) and p(0)
to be true and p(1) to be false.

He, however, has no beliefs concerning the truth values of p(2),
q(1), etc.

Michael Gelfond KR2023



6/42

Plan of the Talk

In what follows I use examples to discuss several ASP based
languages and methodology of their use for solving a number of
classical KR problems, such as representing

defaults and their exceptions

effects of actions

random events and their probabilities

causal relations

If time permits I also say a few words about industrial
applications of these ideas.

Michael Gelfond KR2023



7/42

Negations and Defaults

“¬p” – “p is believed to be false”.

“not p” – “it is not believed that p is true”.

“not¬p” – “it is not believed that p is false,” i.e., “p may be
true” or “p is possible”.

Default “mothers normally love their children” is represented as

loves(X, Y) ← mother(X, Y),

not ¬loves(X, Y).

If X is a mother of Y and she may love Y then she does.

The default, used together with

mother(mary, sam)

allows us to conclude

loves(mary, sam)

Michael Gelfond KR2023



8/42

Exceptions to Defaults

There are three types:

Strong: A new fact directly contradicts the default’s conclusion.

Weak: Stops application of the default without defeating its
conclusion.

Indirect: Exception discovered in the process of reasoning.

The first two are easily represented in ASP. The third is not.

Michael Gelfond KR2023



9/42

Indirect Exceptions

Consider a program Π consisting of

default “p is normally true”,

p(X) ← not ¬p(X).

and rule
q(X) ← p(X).

The program entails q(0) but, after the addition of

¬q(0)

it becomes inconsistent.

“0” is an indirect exception to the default. Intuitively we want Π
to be consistent and entail ¬q(0).

Michael Gelfond KR2023



10/42

ASP with Rare Events (CR-Prolog)

To represent rare events we add to ASP a new language
construct

l
+← body

called consistency-restoring rule (cr-rule).

The rule says that if the reasoner associated with the program
believes the body of the rule, then it “may possibly” believe its
head.

However, this occasion is very rare and the rule may be used
only if there is no way to obtain a consistent set of beliefs by
using only regular rules of the program.

Michael Gelfond KR2023



11/42

To deal with inconsistency of Π we expand our representation of
defaults. Now a default

p(X) ← not ¬p(X).

will come with Contingency Axiom:

¬p(X)
+←

The rest is unchanged.

q(X) ← p(X).

¬q(0)

The answer set of the new program is

{¬q(0),¬p(0), p(1), q(1) . . . }

Michael Gelfond KR2023



12/42

Effects of Actions

Direct effect of an action in “Causal ASP” is captured by causal
law

m(f, a) : holds(f, I) ← occurs(a, I− 1),

body,

¬holds(f, I− 1),

¬ab(m(f, a))

where m(f, a) is the name of the law and time-steps occurring
in the body are smaller then I.

The law says that, under normal circumstances, if “body” holds
then the execution of “a” causes “f” to become true.

Michael Gelfond KR2023



13/42

Normality of the law is established by default

¬ab(M)← not ab(M)

where M ranges over names of causal laws.

Direct and indirect exceptions to the default can be specified as
usual.

The frame problem can be solved by the Inertia Axiom which
says that things normally stay as they are. This is represented
by default

holds(F, I) ← holds(F, I− 1),

not ¬holds(F, I)

Michael Gelfond KR2023



14/42

The problems of understanding and formalizing default
reasoning and reasoning about actions and change remained
unsolved for decades.

They are mostly solved now.

These solutions are used in solving multiple planning and
diagnostic problems, problems in robotics, etc.

Michael Gelfond KR2023



15/42

Randomness and Probability

So far we showed how such basic concepts as defaults and some
causal relations can be expressed in terms of beliefs.

This is also true for randomness and probability.

This is not surprising since probability of an event can be
viewed as the “degree of belief that it has taken place, or that it
will take place” (G. Boole).

Reasoning about probability is simply reasoning about degrees
of belief.

This can be done in P-log.

Michael Gelfond KR2023



16/42

P-log is obtained from ASP by adding

non-boolean functions and atoms of the form f(t̄) = y

a special sort of actions, called random experiments,
described by statements of the form

random(m, f(t̄), p)

where m is the name of an experiment randomly selecting
the value of f(t̄) from {Y : p(Y), Y ∈ range(f)}

Michael Gelfond KR2023



17/42

standard axioms

val(f(X), I) = y0 or . . . or val(f(X), I) = yn ←
random(m, f, p),

occurs(m, I− 1)

where range(f) = {y0, . . . , yn}

and ← f(X) = Y,¬p(Y)

Michael Gelfond KR2023



18/42

statements of the form

pr(m, f(t̄) = y |c body) = v

“Given body, the probability of f(t̄) taking on the value y
as the result of random experiment m is v”.

Michael Gelfond KR2023



19/42

Example: Monty Hall Problem

A player selects one of three closed doors, behind one of which
there is a prize, put there by Monty.

After selection is made, Monty is obligated to open one of the
remaining doors which does not contain the prize.

The player can switch his selection to the other unopened door,
or stay with his original choice.

Does it matter if he switches? The answer is yes.

However, the lady who published the solution received
thousands of letters from her readers—the vast majority of
which, many with PhD in math, disagreed with her answer.

Michael Gelfond KR2023



20/42

This phenomenon was clearly recognized by George Boole who
wrote:

“I think it to be one of the peculiar difficulties of the theory of
probabilities, that its difficulties sometimes are not seen. The
solution of a problem may appear to be conducted according to
the principles of the theory as usually stated; it may lead to a
result susceptible of verification in particular instances; and yet
it may be an erroneous solution.”

Michael Gelfond KR2023



21/42

One possible explanation of this difficulty is the distance
between the informal view of probability as “degree of belief”
and its formal definition via “probability distribution” or other
probabilistic models.

It is not always easy to build the probabilistic model well suited
for a particular task. A wrong model can be the reason for an
error.

One possible way to deal with the problem is to define
probability with respect to explicitly stated knowledge base of
the reasoner solving this task.

This is the approach of P-log.

Michael Gelfond KR2023



22/42

Problem Description

Player’s knowledge in P-log:

Declarations : doors = {1, 2, 3}

selected, prize, open : doors

canOpen : doors→ boolean

Rules : canOpen(D)← not ¬canOpen(D)

¬canOpen(D)← selected = D

¬canOpen(D)← prize = D

The first rule is the default: “Normally, a door can be opened”.

The next two rules are exceptions to this default.

Michael Gelfond KR2023



23/42

For simplicity we assume that the player has already selected
door one:

selected = 1

Values of variables prize and open are chosen by random
experiments m0 and m1 performed by Monty.

Value of prize is chosen from the set of all doors:

random(m0, prize)

Value of open is chosen from the set of doors which can be open
according to the rules of the game:

random(m1, open, canOpen)

Michael Gelfond KR2023



24/42

According to the semantics of P-log:

random(m0, prize)

can be replaced by rule

prize = 1 or prize = 2 or prize = 3

and

random(m1, open, canOpen) by rules

open = 1 or open = 2 or open = 3

← ¬canOpen(D), open = D

Let us denote this program by Π.

Michael Gelfond KR2023



25/42

Consider Π′ obtained by adding to Π

atoms
obs(open = 2) obs(prize 6= 2)

where obs stands for the player’s observation;

To deal with observations we need general “Reality Check”
axiom ← obs(A),¬A

which guarantees that the program’s conclusions do not
contradict observations.

Michael Gelfond KR2023



26/42

Π′ defines possible worlds1:

W1 = {prize = 1, canOpen(2), canOpen(3), open = 2}

W2 = {prize = 3, canOpen(2), open = 2}

Probabilistic measures of W1 and W2 are

µ(W1) = 1/3× 1/2 = 1/6
µ(W2) = 1/3× 1 = 1/3

Changing the door doubles player’s chances to win.

1Non-random select = 1 is not included.
Michael Gelfond KR2023



27/42

Discussion

Probabilistic model of the domain consists of rules of the game
and a particular scenario written in P-log.

It is very close to the English description of the story.

Formal model is the main part of problem solution. The rest is
automatic.

Its worth noting that if rule

¬canOpen(D)← prize = D

were removed from the program then changing the door would
not change the chance of winning.

Michael Gelfond KR2023



28/42

Causality

Consider several stories in which an officer orders the group of
guards to shoot a prisoner.

In the first story the guards follow the order.

In the second one guard refuses to do that.

In the third all of them disobey.

In the forth the officer orders the execution and later,
unexpectedly, observes the prisoner to be alive.

In each story we will look for causal relations between actions of
the officer and the guards and the final state of the prisoner.

Michael Gelfond KR2023



29/42

Causal Theories

Reasoning about causal relations is done in a subclass of ASP
programs called causal theories.

These limitations, together with the collection of general axioms
included in every causal theory, allow causal interpretation of
the ← in the theory’s laws.

Michael Gelfond KR2023



30/42

Formalizing the stories

The signature of our theory T contains a group g = {1, 2} of
guards, actions shoot(G) where G ∈ g and order(g, shoot) –
“the officer orders the group to shoot”, and inertial fluents
ordered(g, shoot) and alive.

m0 : ordered(g, shoot, I) ← occurs(order(g, shoot), I− 1)),

¬ordered(g, shoot, I− 1),

¬ab(m0, I)

m1(G) : occurs(shoot(G), I) ← ordered(g, shoot, I),

in(G, g),

¬ab(m1(G), I)

Michael Gelfond KR2023



31/42

m2 : ¬alive(I) ← card{G : occurs(shoot(G), I− 1)} > 0,

alive(I− 1),

¬ab(m2, I)

where card is the cardinality of the set.

The rule says that shooting by at least one guard will cause the
prisoner’s death.

Michael Gelfond KR2023



32/42

The first story is formalized by causal theory T(S1) = T ∪ S1
where

S1 = 〈init(alive), do(order(g, shoot), 0)〉

do(A, I) stands for deliberate execution of action A at step I.

do(order(g, shoot), 0) initiates a chain of events leading to the
prisoner’s death.

It is called the death’s “deliberate cause”.

Shootings by the particular guards are “factual” or “physical”
causes of this events.

Michael Gelfond KR2023



33/42

In the second story T is used together with scenario

S2 = 〈init(alive), do(order(g, shoot), 0), do(¬shoot(1), 1)〉

where do(¬shoot(1), 1) indicates that the first guard
deliberately refused to follow the order.

Since the second shot anyway do(order(g, shoot), 0) is still the
deliberate cause of death but now there is only one factual
cause.

Michael Gelfond KR2023



34/42

In the third story T is used together with

S3 = S1 ∪ {do(¬shoot(1), 1), do(¬shoot(2), 1)}

The orders were deliberately disobeyed by all guards and the
prisoner remained alive. This event has neither deliberate nor
factual cause – it is simply a consequence of inertia.

One can, however, say that guards deliberate refusal to shoot,

do(¬shoot(1), 1), do(¬shoot(2), 1)

“prevented the death of the prisoner expected in S1”.

Michael Gelfond KR2023



35/42

Finally, the forth story is represented by

S4 = 〈init(alive), do(order(g, shoot), 0), obs(alive, 3)〉

The unexpected observation has a “causal explanation”

{do(¬shoot(1), 1), do(¬shoot(2), 1)}

The notion of causal theory together with the collection of
definitions of various causal relations allowed us to obtain
reasonable representations and reasonable answers to causal
queries for all the examples we were able to investigate so far.

Michael Gelfond KR2023



36/42

Discussion

ASP based languages were useful in understanding basic
categories of language and thought and the development of KR
methodology.

Some of the languages have efficient reasoning systems and
non-trivial mathematical theory.

Others are still under development.

It is important to complete this work.

There are also more basic categories to look at.

Another big task is the axiomatization of large parts of
commonsense knowledge.

Michael Gelfond KR2023



37/42

An Industrial Application

A story by Gerhard Friedrich – former head of the Department
for Configurations and Diagnosis at Siemens, Germany.

Worked on configuration problem for more than 20 years. Used
different methods, including procedural programming,
constraint programming, etc.

The problem is difficult. E. g. in telecommunication domain,
just focusing on hardware:

Up to 30.000 modules of 200 types

Up to 1.000 frames of 50 types

Up to 200 racks of 20 types

Up to 10.000 cables of 50 types

Michael Gelfond KR2023



38/42

Use of ASP allowed

Reduction of initial development cost by 66%

Reduction of yearly maintenance cost by 80%

Productivity increase by 300% (no additional staff)

Enhanced user interaction: explanations, incremental
configuration, repair ...

In this case ASP delivered on its promise.

Michael Gelfond KR2023



39/42

Gerhard gave an example of ASP program consisting of 12 rules.

Quote: “ By this simple ASP program, we solved real world
instances which could NOT be solved by the in-house tool”

In his estimate “ASP is a historical leap for AI”.

We still need to

(a) improve efficiency of algorithms and implementations for
ASP and its extensions;

(b) improve the methodology of refining initial knowledge bases
to make them executable;

(c) teach knowledge representation and declarative
programming.

Michael Gelfond KR2023



40/42

References

Chitta Baral, Knowledge representation, Reasoning and
Declarative Problem Solving, 2003, Cambridge University Press

Michael Gelfond and Yulia Kahl, Knowledge representation,
Reasoning and the Design of Intelligent Agents: The Answer Set
Programming Approach, 2014, Cambridge University Press

Michael Gelfond KR2023



41/42

THANK YOU

Michael Gelfond KR2023



42/42

Michael Gelfond KR2023


