How to make logics neurosymbolic

Luc De Raedt Giuseppe Marra & Vincent Derkinderen & Sebastijan Dumancic & Robin Manhaeve & Thomas Winters & Angelika Kimmig

Learning and Reasoning both needed

• System I - thinking fast - can do things like 2+2 = ? and recognise objects in image

THINKING,

- System 2 thinking slow can reason about solving complex problems planning a complex task
- alternative terms data-driven vs knowledge-driven, symbolic vs subsymbolic, solvers and learners, neuro-symbolic...
- A lot of work on integrating learning and reasoning, neural symbolic computation to integrate logic / symbols reasoning with neural networks

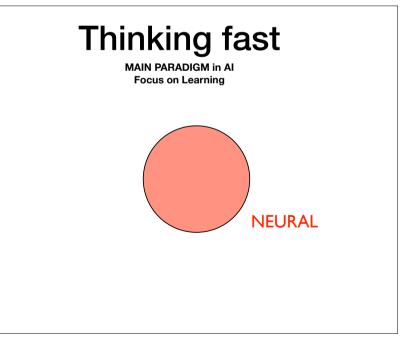
see also arguments by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, Bengio, Le Cun, Kaut<u>z</u>, ...

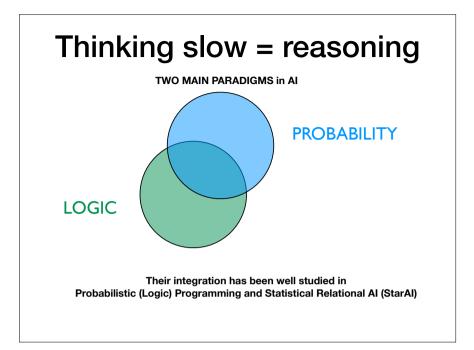
Real-life problems involve two important aspects.

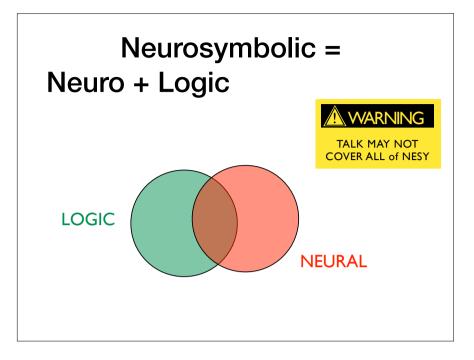
Who can go first ?

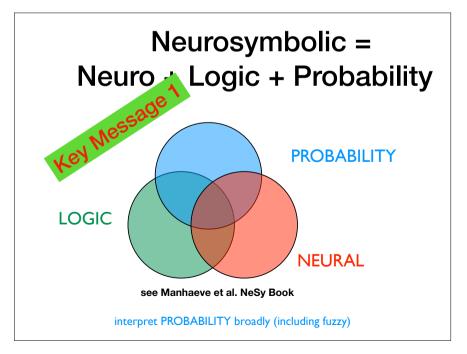
A. The red car B. The blue van C. The white car

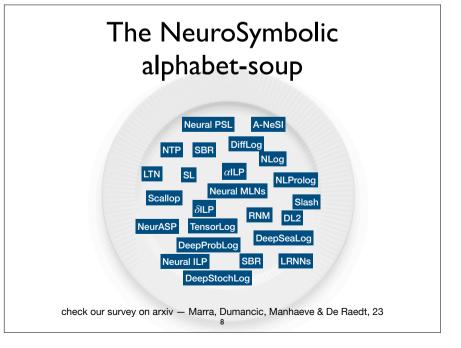
C. The white cal



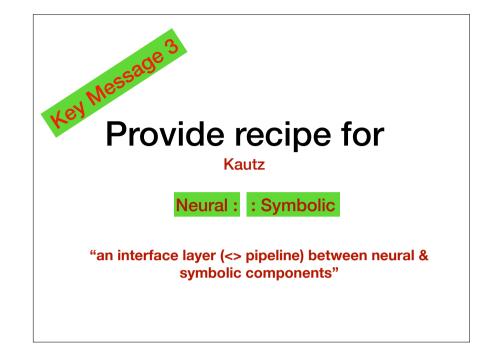










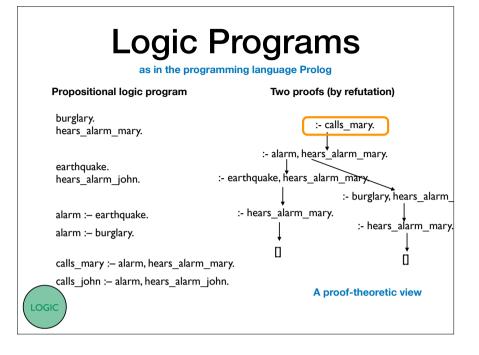


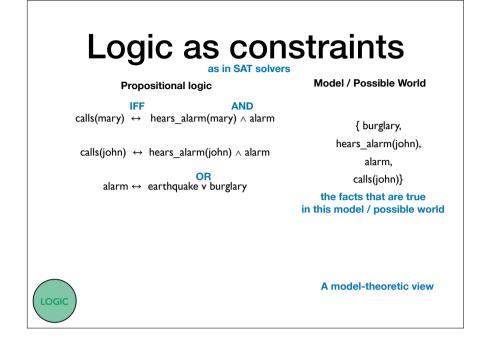
Part 1: NeSy AI - a little Survey

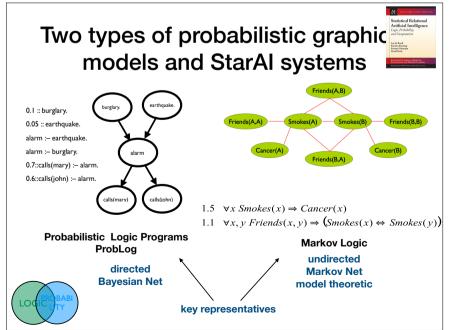
Part 2: The Recipe

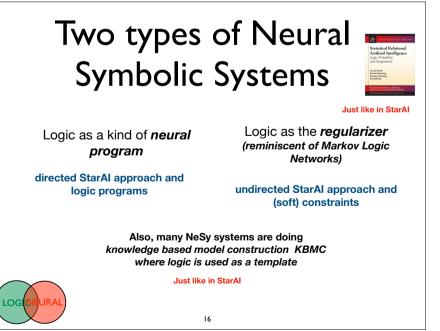
Part 3: DeepStochLog and DeepProbLog Part 1: NeSy AI - a little survey

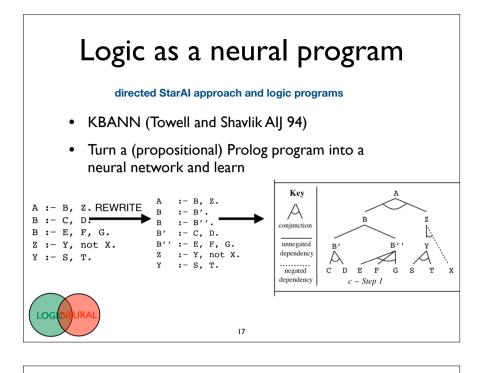
check our survey on arxiv - Marra, Dumancic, Manhaeve & De Raedt, 23







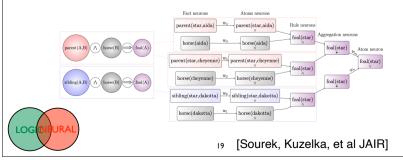


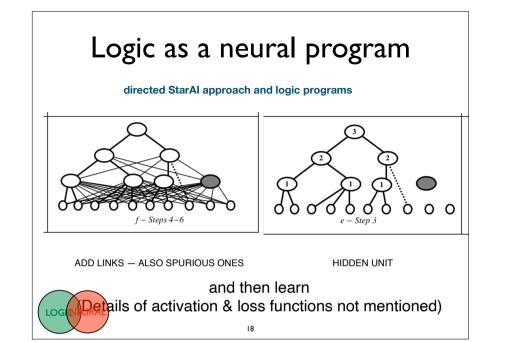


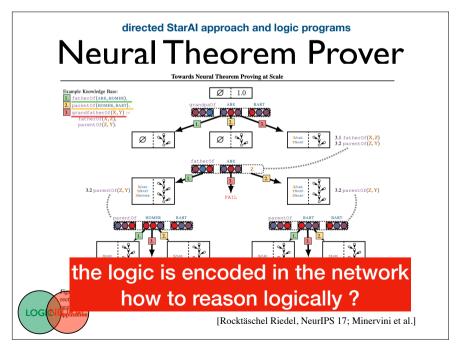
Lifted Relational Neural Networks

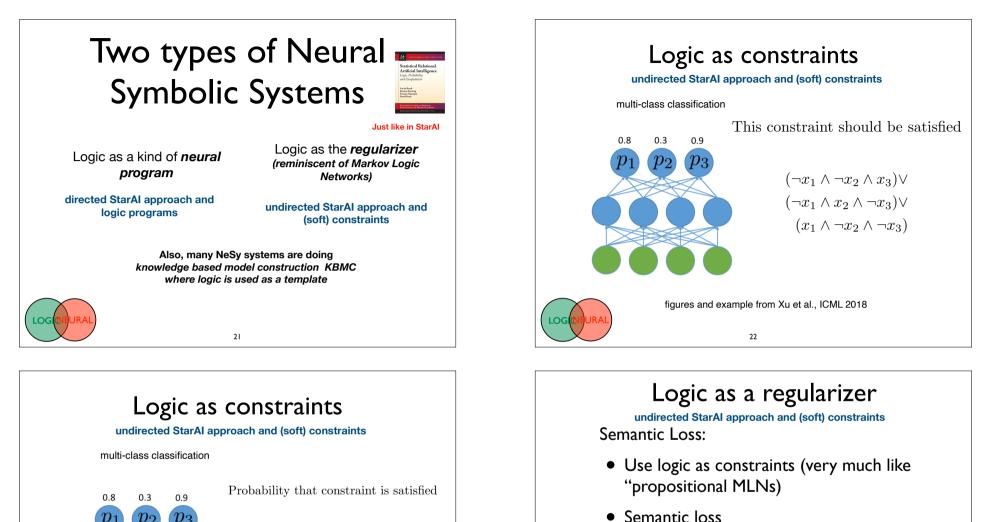
directed StarAI approach and logic programs

- Directed (fuzzy) NeSy
- similar in spirit to the Bayesian Logic Programs and Probabilistic Relational Models
- Of course, other kind of (fuzzy) operations for AND, OR and Aggregation (cf. later)









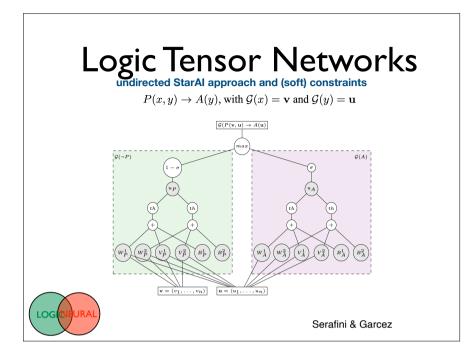
 $(1 - x_1)(1 - x_2)x_3 +$ $(1 - x_1)x_2(1 - x_3) +$ $x_1(1 - x_2)(1 - x_3)$

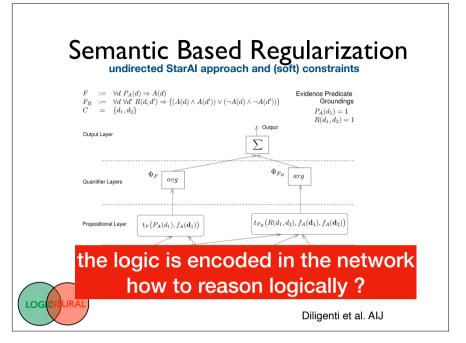
basis for SEMANTIC LOSS (weighted model counting) $SLoss(T) \propto -\log \sum_{X \models T} \prod_{x \in X} p_i \prod_{\neg x \in X} (1 - p_i)$ • Used as regulariser

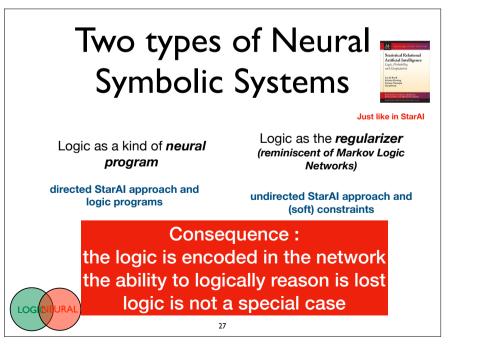
Loss = Traditional Loss + w.SLoss

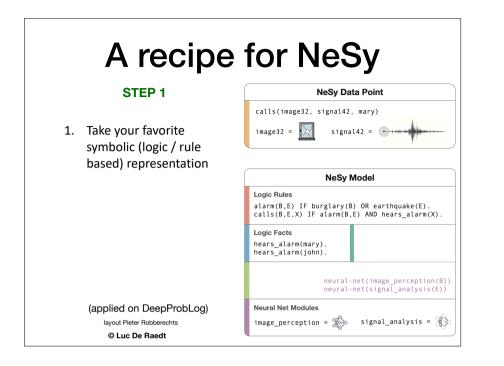
• Use weighted model counting , close to StarAI

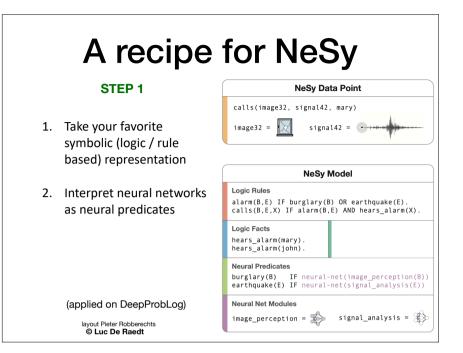
24

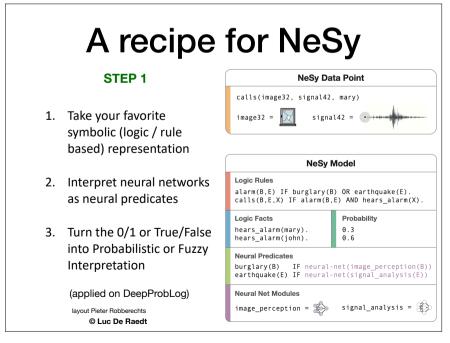


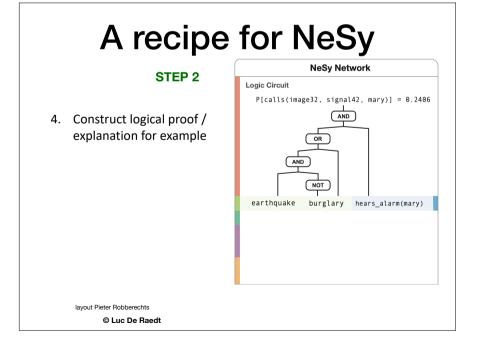


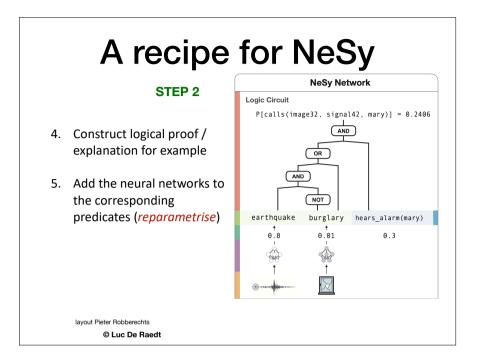


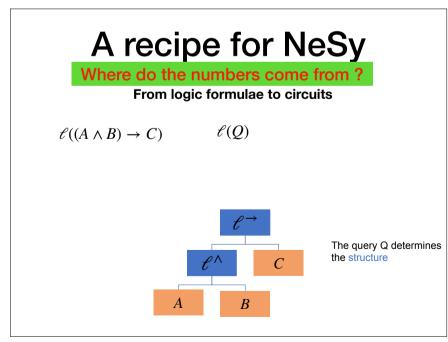


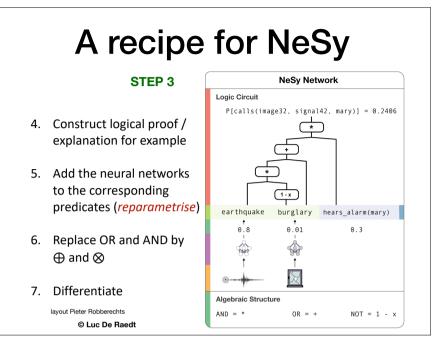


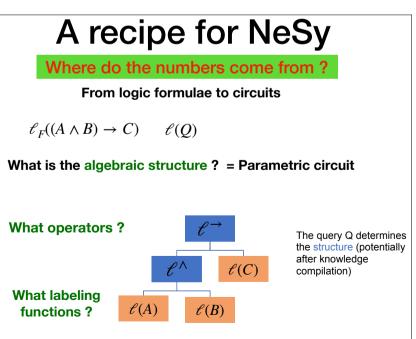


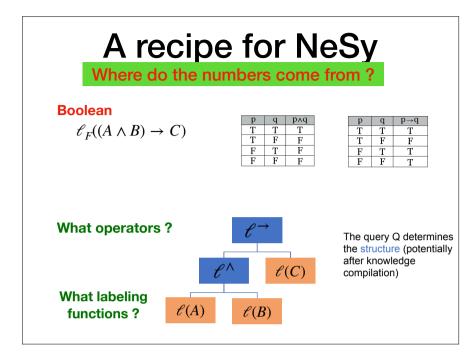


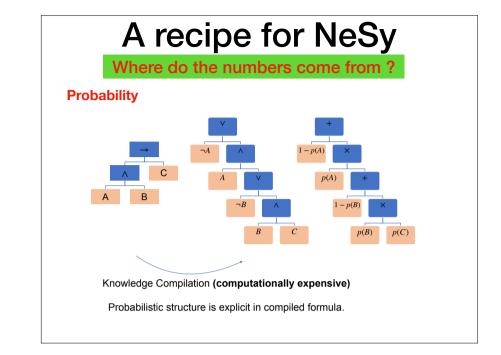


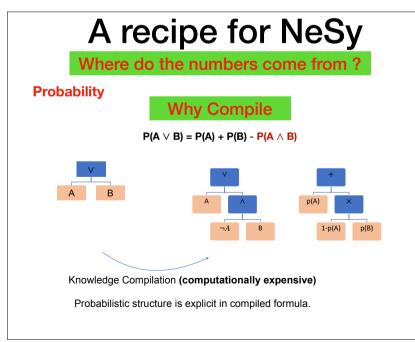


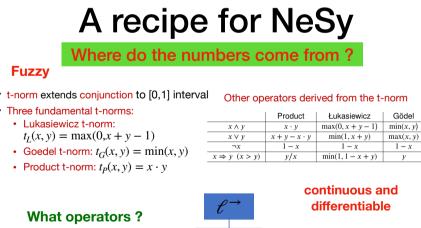












 $\ell(B)$

 $\ell(C)$

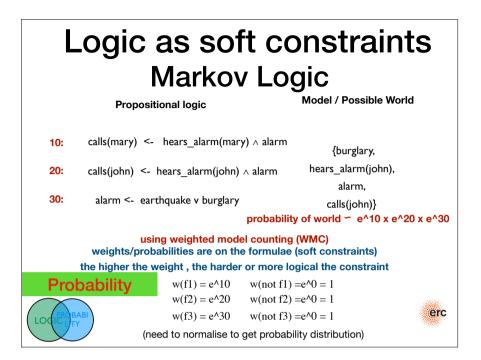
What labeling

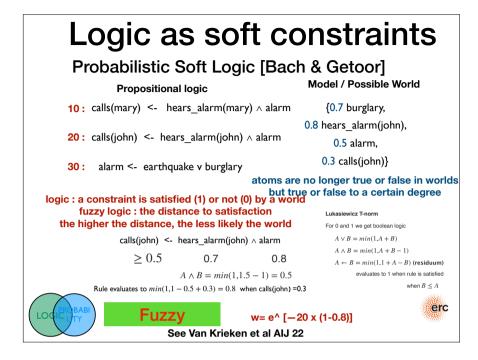
functions?

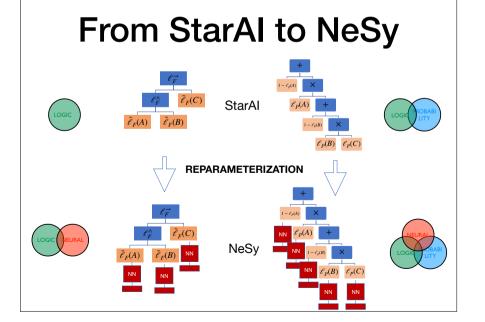
 $\ell(A)$

but a measure of vagueness not of uncertainty

Many problems See [Van Krieken et al AIJ]







Part 3: DeepStochLog and DeepProbLog

Two types of probabilistic models / programs

- Based on a random graph model
 - Bayesian Nets and ProbLog -> DeepProbLog [AIJ 21]
- Based on a random walk model
 - Probabilistic grammars and Stochastic Logic Programs [Muggleton] -> DeepStochLog [AAAI 22]

Our method/recipe: Take an existing probabilistic logic and inject neural predicates that act ako interface

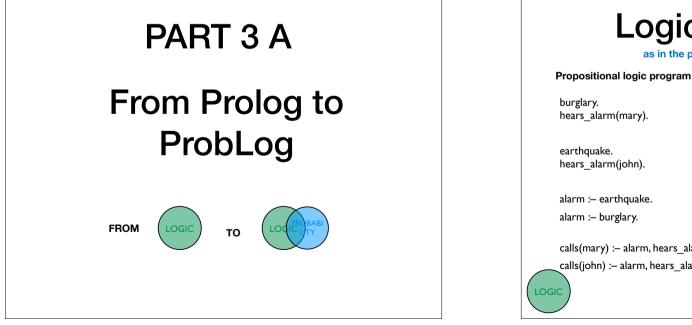
DeepProbLog

DeepProbLog = Probability + Logic + Neural Network

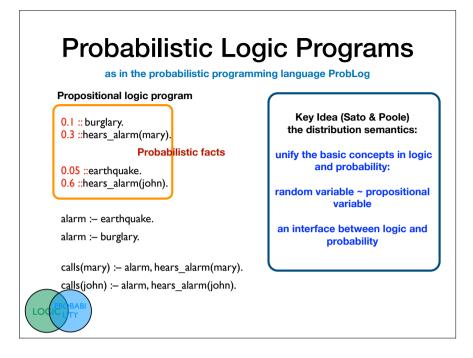
DeepProbLog = ProbLog + Neural Network

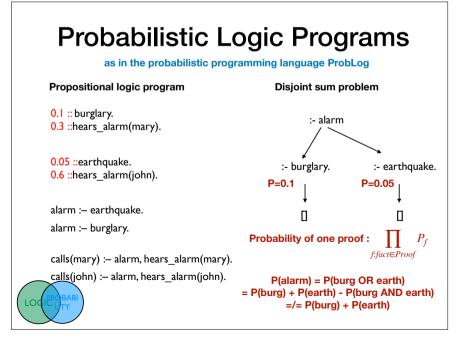
Related work in NeSy	DeepProbLog
Logic is made less expressive	Full expressivity is retained
Logic is pushed into the neural network	Maintain both logic and neural network
Fuzzy logic	Probabilistic logic programming
Language semantics unclear	Clear semantics
Holds also for D	eepStochLog

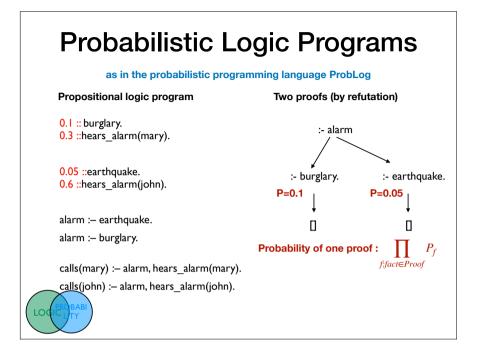
DeepStochLog = SLPs + Neural Network



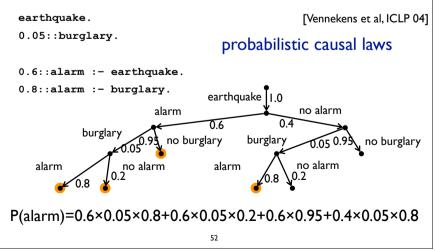
Logic Programs as in the programming language Prolog Propositional logic program burglary. hears_alarm(mary). earthquake. hears_alarm(john). alarm :- earthquake. alarm :- earthquake. alarm :- burglary. calls(mary) :- alarm, hears_alarm(mary). calls(john) :- alarm, hears_alarm(john).

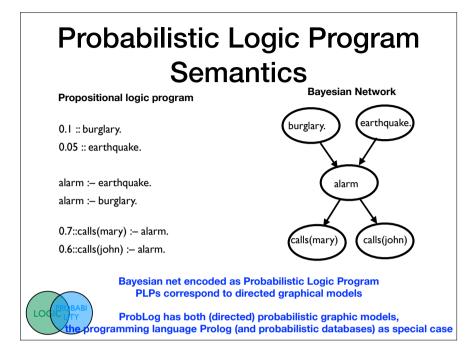






Probabilistic Logic Program Semantics





S

Flexible and Compact Relational Model for Predicting Grades

"Program" Abstraction:

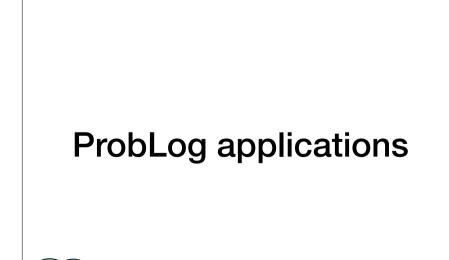
- S, C logical variable representing students, courses
- the set of individuals of a type is called a population
- Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:

- for every student s, there is a random variable Int(s)
- for every course c, there is a random variable Di(c)

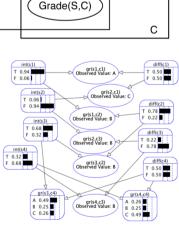
for every s, c pair there is a random variable Grade(s,c) all instances share the same structure and parameters

ng, Natarajan, Poole: Statistical Relational AI



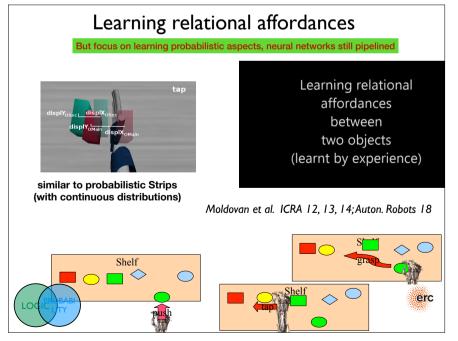
ProbLog by example: Int(S) Grading Grade(S,C) Shows relational structure grounded model: replace variables by constants int(s1) T 0.94 F 0.06 gr(s1,c1) Observed Value: Works for any number of students / classes (for 1000 students and 100 classes, you get 101100 random int(s2) T 0.06 variables); still only few parameters F 0.94 gr(s1,c2) Observed Value: int(s3) With SRL / PP T 0.68 F 0.32 gr(s2,c3) build and learn compact models, int(s4) T 0.32 gr(s3,c2) Observed Value: B from one set of individuals - > other sets; reason also about exchangeability, gr(s4,c3) Observed Value: B build even more complex models, porate background knowledge

ing, Nataraian, Poole: Statistical Relation AI

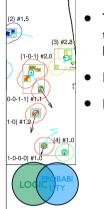


Diff(C)





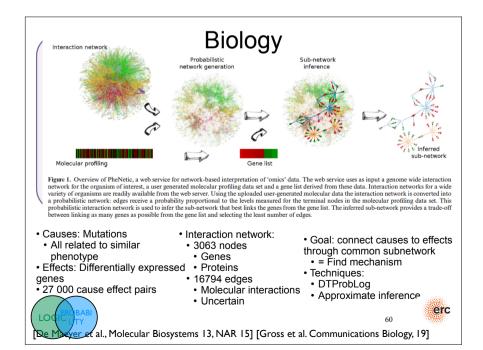
Activity analysis and tracking



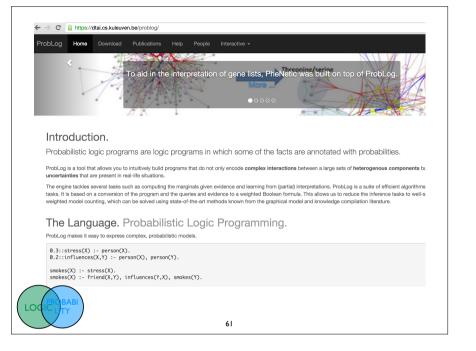
- Track people or objects over time? Even if temporarily hidden?
- Recognize activities?
- Infer object properties?

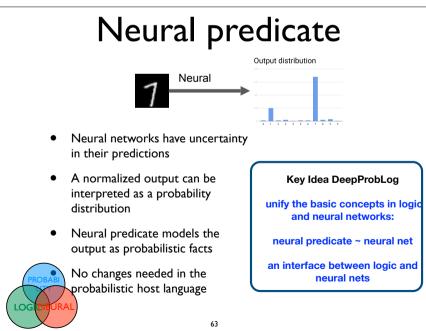
[Skarlatidis et al, TPLP 14; Nitti et al, IROS 13, ICRA 14, MLJ 16]

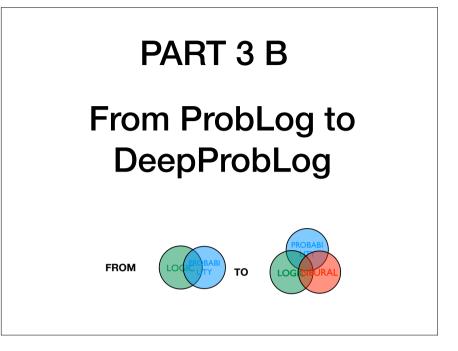
[Persson et al, IEEE Trans on Cogn. & Dev. Sys. 19; I[CAI 20]



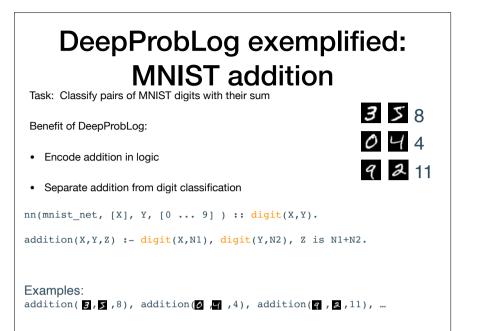
58

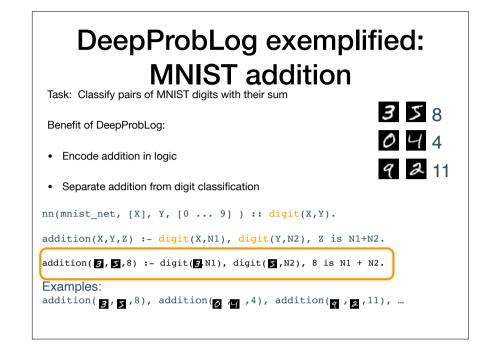


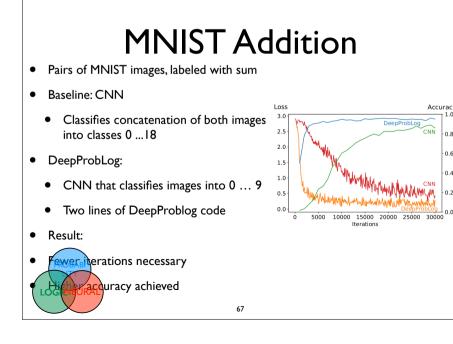




Description of the neural network is probabilistic facts in DeepProbLog Example: nn(mnist_net, [X], Y, [0 ... 9]) :: digit(X,Y). Instantiated into a (neural) Annotated Disjunction: 0.04::digit(1,0) : 0.35::digit(1,1) : ...; 0.53::digit(1,7) : ... : 0.014::digit(1,9).







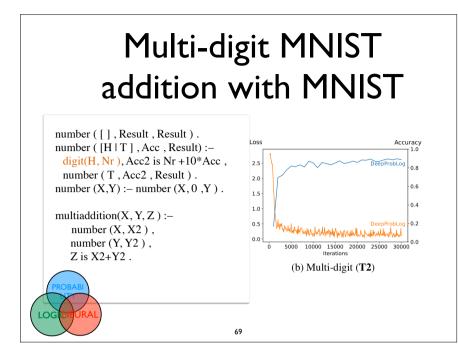
Learn to classify the sum of pairs of MNIST digits

Individual digits are not labeled!

E.g. (3, 5, 8)

Could be done by a CNN: classify the concatenation of both images into 19 classes

35041+921=?



Inference & Learning

Noisy Addition

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t(0.2) :: noisy.

1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

<pre>addition(X,Y,Z)</pre>	:-	noisy, 1	uniform(X,Y,Z)			
<pre>addition(X,Y,Z)</pre>	:-	\+noisy	, digit(X,N1),	<pre>digit(Y,N2),</pre>	\mathbf{Z} is	N1+N2.

		I	Fraction	of noise		
	0.0	0.2	0.4	0.6	0.8	1.0
Baseline	93.46	87.85	82.49	52.67	8.79	5.87
DeepProbLog	97.20	95.78	94.50	92.90	46.42	0.88
DeepProbLog w/ explicit noise	96.64	95.96	95.58	94.12	73.22	2.92
Learned fraction of noise	0.000	0.212	0.415	0.618	0.803	0.985

Table 3: The accuracy on the test set for $\mathbf{T4}$.

ProbLog Inference

Answering a query in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit
- 4. Evaluate the arithmetic circuit
- 0.1 :: burglary.
 0.5 :: hears_alarm(mary).
 0.2 :: earthquake.
 0.4 :: hears_alarm(john).
 alarm :- earthquake.
 alarm :- burglary.
 calls(X) :- alarm, hears_alarm(X).

Query

P(calls(mary))

ProbLog Inference

Answering a guery in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query (only relevant part !)
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit
- 4. Evaluate the arithmetic circuit

0.1 :: burglary. 0.5 :: hears_alarm(mary).

Query

0.2 :: earthquake. 0.4 :: hears_alarm(john). P(calls(mary))

alarm :- earthquake.

alarm :- burglary. calls(mary) :- alarm, hears_alarm(mary).

calls(john) :- alarm, hears_alarm(john).

ProbLog Inference

Answering a guery in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit
- 4. Evaluate the arithmetic circuit

0.1 :: burglary.

- 0.5 :: hears_alarm(mary).
- 0.2 :: earthquake. 0.4 :: hears_alarm(john).

alarm :- earthquake.

hears alarm(mary) \land (burglary \lor earthquake)

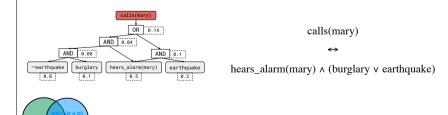
alarm :- burglary. calls(mary) :- alarm, hears_alarm(mary).

calls(john) :- alarm, hears_alarm(john).

ProbLog Inference

Answering a query in a ProbLog program happens in four steps

- 1. Grounding the program w.r.t. the query
- 2. Rewrite the ground logic program into a propositional logic formula
- 3. Compile the formula into an arithmetic circuit (knowledge compilation)
- 4. Evaluate the arithmetic circuit



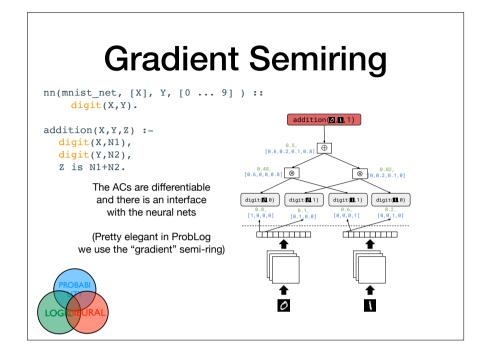
Useful Semirings

task	\mathcal{A}	e^{\oplus}	e^{\otimes}	\oplus	\otimes	$\alpha(v)$	$\alpha(\neg v)$	ref
SAT	$\{true, false\}$	false	true	V	^	true	true	B, BT, G, GK, K, L, M
#SAT	N	0	1	+		1	1	B, G, GK, K, L
WMC	$\mathbb{R}_{\geq 0}$	0	1	+		$\in \mathbb{R}_{\geq 0}$	$\in \mathbb{R}_{\geq 0}$	
PROB	$\mathbb{R}_{\geq 0}$	0	1	+		$\in [0,1]$	$1 - \alpha(v)$	B, BT, E, G, K
SENS	$\mathbb{R}[\mathcal{V}]$	0	1	+		$v \text{ or } \in [0, 1]$	$1 - \alpha(v)$	K
GRAD	$\mathbb{R}_{\geq 0} \times \mathbb{R}$	(0, 0)	(1, 0)	Eq. (4)	Eq. (5)	Eq. (2)	Eq. (3)	E, K
MPE	$\mathbb{R}_{\geq 0}$	0	1	max		$\in [0,1]$	$1 - \alpha(v)$	B, BT, G, K, L, M
S-PATH	\mathbb{N}^{∞}	∞	0	min	+	$\in \mathbb{N}$	0	BT, GK, K
W-PATH	N∞	0	∞	max	min	$\in \mathbb{N}$	∞	BT
FUZZY	[0, 1]	0	1	max	min	$\in [0, 1]$	1	GK, M
<i>k</i> WEIGHT	$\{0,, k\}$	k	0	min	$+^{k}$	$\in \{0,\ldots,k\}$	$\in \{0,\ldots,k\}$	М
OBDD<	$OBDD_{<}(V)$	$OBDD_{<}(0)$	$OBDD_{<}(1)$	V	Λ	$OBDD_{<}(v)$	$\neg OBDD_{<}(v)$	K
WHY	$\mathcal{P}(\mathcal{V})$	Ø	Ø	U	U	$\{v\}$	n/a	GK
\mathcal{RA}^+	$\mathbb{N}[\mathcal{V}]$	0	1	+		v	n/a	GK

Table 1: Examples of commutative semirings and labeling functions. The **WHY** and \mathcal{RA}^+ provenance semirings apply to positive literals only. Reference key: B (Bacchus et al., 2009), BT (Baras and Theodorakopoulos, 2010), E (Eisner, 2002), G (Goodman, 1999), GK (Green et al., 2007), K (Kimmig et al., 2011), L (Larrosa et al., 2010), M (Meseguer et al., 2006); more examples can be found in these references.

From Kimmig, Vanden Broeck and De Raedt, 2016

calls(mary)



Example DeepProbLog neural predicate hole(X,Y,X,Y):-Sorting: Training length Addition: training length swap(X,Y,0). Test Length 2 4 100.0 100.0 100.0 49.22 100.0 100.0 hole(X,Y,Y,X):-∂4 [Bošnjak et al., 2017] 64 100.0 100.0 100.0 100.0 100.0 20.65 swap(X,Y,1). 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 DeepProbLog 64 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 bubble sort (a) Accuracy on the sorting and addition problems (results for $\partial 4$ reported by Bošnjak et al. [2017]). bubble([X],[],X). Training length \longrightarrow | 2 bubble([H1,H2IT],[X1IT1],X):-∂4 on GPU 42 s 160 s 61 s 390 s hole(H1,H2,X1,X2), ∂4 on CPU bubble([X2IT],T1,X). DeepProbLog on CPU 11 s 14 s 32 s 114 s 245 s bubblesort([],L,L), (b) Time until 100% accurate on test length 8 for the sorting problem. bubblesort(L,L3,Sorted) :-Table 1: Results on the Differentiable Forth experiments hubble(I_I 2 X) bubblesort(L2,[XIL3],Sorted). sort(L,L2) :- bubblesort(L,[],L2).

erc

Program Induction/Sketching

In Neural Symbolic methods

- Rule Induction work with templates
 - P(X) := R(X,Y), Q(Y)
- and have the "predicate" variables / slots P,Q, R determined by the NN
- Simpler form, fill just a few slots / holes

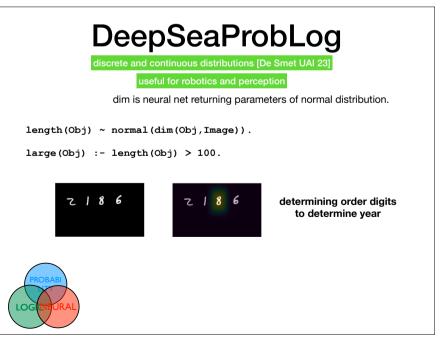
Approach similar to 'Programming with a Differentiable Forth Interpreter' [1] ∂4

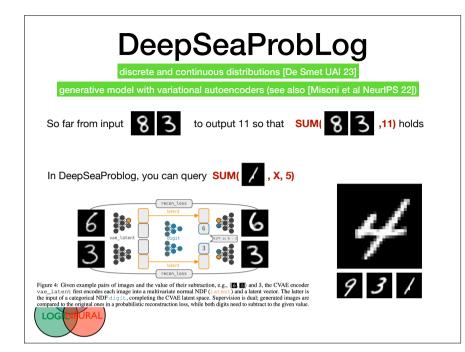
- Partially defined Forth program with slots / holes
- Slots are filled by neural network (encoder / decoder)

Fully differentiable interpreter: NNs are trained with input / output examples

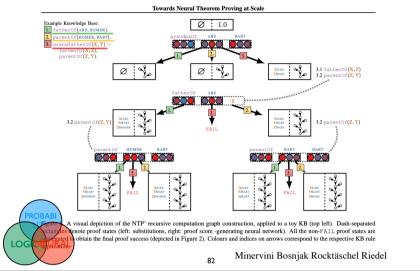
m Rocktäschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter.

78





Neural Theorem Prover



Probabilistic Logic Shield for Reinforcement Learning Ven-chi Yang et al, IJCAI 23 Distinguished paper award Shield Assuming noisy sensors Will stay undamaged? 0.8::obstc(front) 0.2::obstc(left). $\mathbf{P}(\texttt{safe} | a, s) =$ $\int accelerate \rightarrow 0.28$ 0.5::obstc(right) left $\rightarrow 0.92$ $\rightarrow 0.8$ right 0.5:: act(accel); 0.3::act(left); Probability of Probability of Probability 0.2::act(right) $\int \pi(\text{accelerate} | s) = 0.5$ safe if following π ? $\pi(\texttt{left}|s) = 0.3$ 0.9 :: crash:- obstc(front), act(accel). $P_{\pi}(safe | s) = 0.576$ $\pi(\text{right} \mid s) = 0.2$ 0.4 :: crash:- obstc(left), act(left). 0.4 :: crash:- obstc(right), act(right). safe:- ¬crash. What is a safer policy π^+ ? AD. $\pi^+(\text{accelerate}|s) = 0.24$ DeepProbLog Theory $\pi^+(\texttt{left} \mid s) = 0.48$ $\pi^+(s)$ (Manhaeve et al. AlJ) $\pi^{+}(right | s) = 0.28$

Soft Unification

- NTP :"grandpa" softly unifies with "grandfather", as embeddings are close
- DeepProblog : define

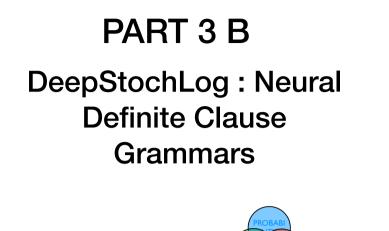
softunification(X,Y) :- embed(X,EX), embed(Y,EY), rbf(EX,EY).

softunification(X,Y) returns I if X and Y unify

otherwise returns
$$exp(\frac{-||e_X - e_Y||_2}{2\mu^2})$$

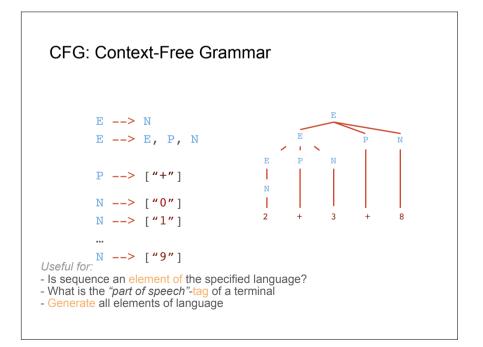
grandPaOf(X,Y) :- softunification(grandPaOf,R), R(X,Y).

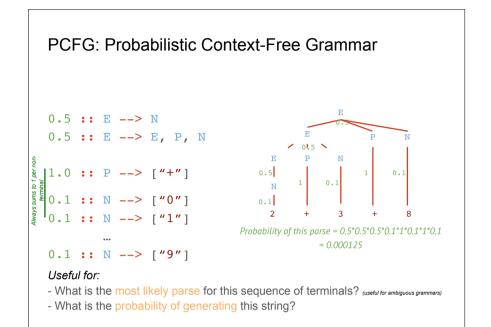
DeepStochLog : Neural Definite Clause Grammars

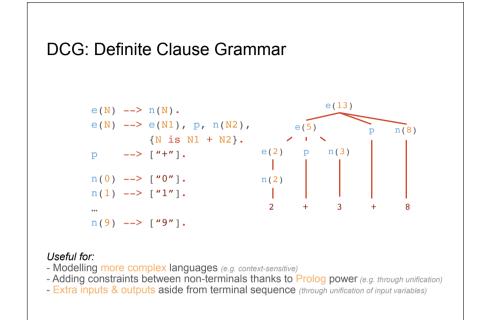


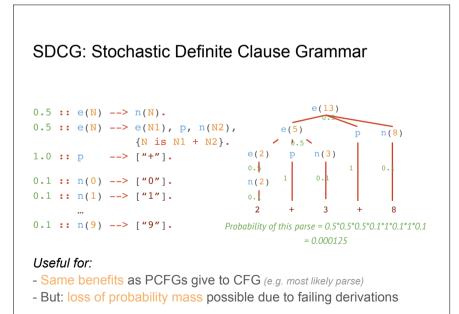
DeepStochLog

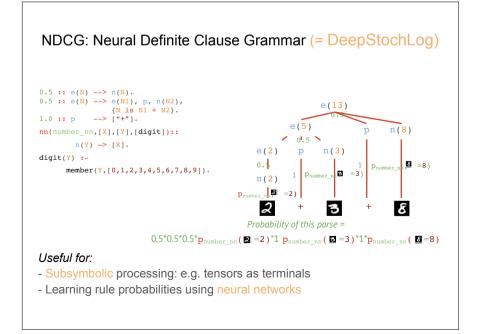
- Little sibling of DeepProbLog [Winters, Marra, et al AAAI 22]
- Based on a different semantics
 - probabilistic graphical models vs grammars
 - random graphs vs random walks
- Underlying StarAl representation is **Stochastic Logic Programs** (Muggleton, Cussens)
- close to Probabilistic Definite Clause Grammars, ako probabilistic unification based grammar formalism
- again the idea of neural predicates
- Scales better, is faster than DeepProbLog

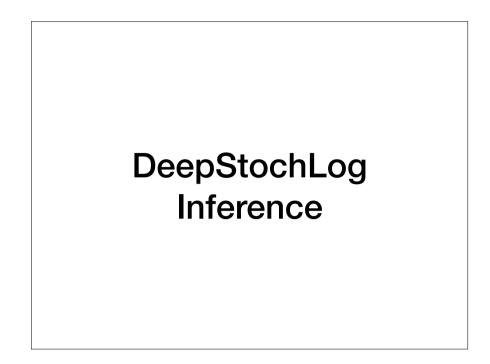


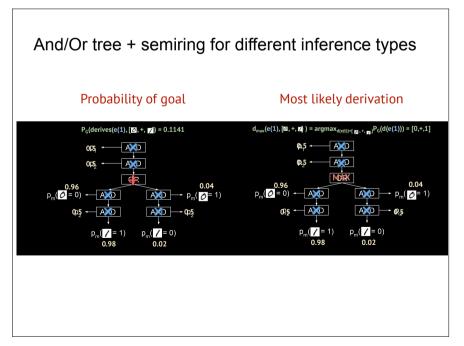


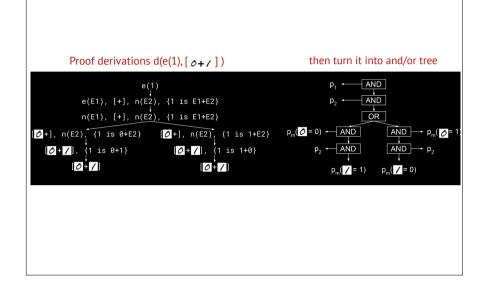












Deriving probability of goal for given terminals in NDCG

Inference optimisation

- Inference is optimized using
 - SLG resolution: Prolog tables the returned proof tree(s), and thus creates forest

 \rightarrow Allows for reusing probability calculation results from intermediate nodes

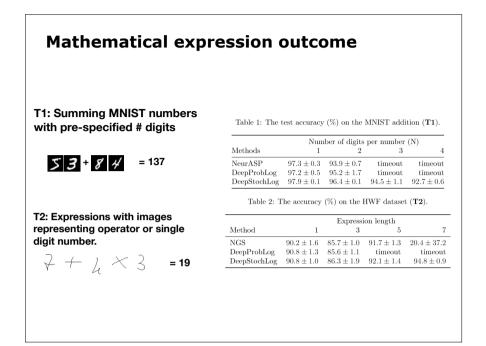
Table 6: **Q4** Parsing time in seconds (**T2**). Comparison of the DeepStochLog with and without tabling (SLD vs SLG resolution).

Lengths	$\# \ \mathbf{Answers}$	No Tabling	Tabling
1	10	0.067	0.060
3	95	0.081	0.096
5	1066	3.78	0.95
7	10386	30.42	10.95
9	68298	1494.23	132.26
11	416517	timeout	1996.09

Batched network calls: Evaluate all the required neural network queries first

 \rightarrow Very natural for neural networks to evaluate multiple instances at once using batching

& less overhead in logic & neural network communication

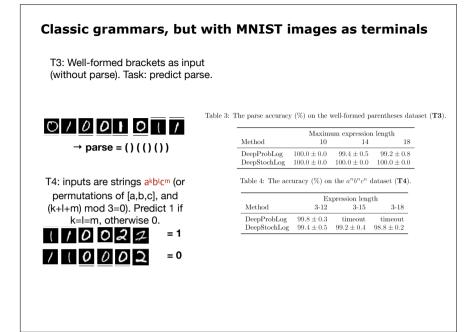


Citation networks

T5: Given scientific paper set with only few labels & citation network, find all labels

Table 5: Q3 Accuracy (%) of the classification on the test nodes on task T5

Method	Citeseer	Cora
ManiReg	60.1	59.5
SemiEmb	59.6	59.0
LP	45.3	68.0
DeepWalk	43.2	67.2
ICA	69.1	75.1
GCN	70.3	81.5
DeepProbLog	timeout	timeout
DeepStochLog	65.0	69.4



Challenges

- For NeSy,
 - scaling up
 - · which models and which knowledge to use
 - large scale life applications
 - · peculiarities of neural nets & fuzzy logic
 - dynamics / continuous
- This is an excellent area for starting researchers / PhDs

