

Real-life problems involve two important aspects.

Who can go first?
A. The red car
B. The blue van
C. The white car

Learning and Reasoning

 both needed- System I - thinking fast - can do things like $2+2=$? and recognise objects in image
- System 2 - thinking slow - can reason about solving complex problems - planning a complex task
- alternative terms - data-driven vs knowledge-driven, symbolic vs subsymbolic, solvers and learners, neuro-symbolic..
- A lot of work on integrating learning and reasoning, neural symbolic computation to integrate logic / symbols reasoning with neural networks
see also arguments
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner, Bengio, Le Cun, Kautz,

Thinking fast

MAIN PARADIGM in AI
Focus on Learning

Thinking slow = reasoning

Their integration has been well studied in Probabilistic (Logic) Programming and Statistical Relational AI (StarAI)

Neurosymbolic = Neuro + Logic

The NeuroSymbolic alphabet-soup

check our survey on arxiv - Marra, Dumancic, Manhaeve \& De Raedt, 23

Provide recipe for

Kautz

Neural : : Symbolic

"an interface layer (<> pipeline) between neural \& symbolic components"

Part 1: NeSy Al - a little survey

Logic Programs
 as in the programming language Prolog

Propositional logic program
Two proofs (by refutation)

burglary

hears_alarm_mary.
arthquake.
hears_alarm_john.
alarm :- earthquake.
alarm :- burglary.
calls_mary :- alarm, hears_alarm_mary.

A proof-theoretic view

Logic as constraints
 as in SAT solvers

Propositional logic
$\stackrel{\text { IFF }}{\stackrel{y}{c}} \stackrel{\text { AND }}{\leftrightarrow}$ hears_alarm(mary) \wedge alarm
calls(john) \leftrightarrow hears_alarm(john) ^ alarm
alarm \leftrightarrow earthquake v burglary
Model / Possible World
\{ burglary, hears_alarm(john), alarm,
calls(john)\}

Two types of Neural Symbolic Systems

Logic as a kind of neura program
directed StarAl approach and logic programs

Logic as the regularizer (reminiscent of Markov Logic Networks)
undirected StarAl approach and (soft) constraints

Also, many NeSy systems are doing knowledge based model construction KBMC where logic is used as a template

Just like in StarAl

Logic as a neural program

directed StarAI approach and logic programs

- KBANN (Towell and Shavlik AIJ 94)
- Turn a (propositional) Prolog program into a neural network and learn

Lifted Relational Neural Networks

directed StarAI approach and logic programs

- Directed (fuzzy) NeSy
- similar in spirit to the Bayesian Logic Programs and Probabilistic Relational Models
- Of course, other kind of (fuzzy) operations for AND, OR and Aggregation (cf. later)

19 [Sourek, Kuzelka, et al JAIR]

Logic as a neural program

directed StarAI approach and logic programs

ADD LINKS - ALSO SPURIOUS ONES
HIDDEN UNIT
and then learn
(Details of activation \& loss functions not mentioned)
18

Logic as constraints

undirected StarAI approach and (soft) constraints

> multi-class classification

Probability that constraint is satisfied

$$
\begin{aligned}
& \left(1-x_{1}\right)\left(1-x_{2}\right) x_{3}+ \\
& \left(1-x_{1}\right) x_{2}\left(1-x_{3}\right)+ \\
& x_{1}\left(1-x_{2}\right)\left(1-x_{3}\right) \\
& \\
& \text { basis for SEMANTIC LOSS } \\
& \text { (weighted model counting) }
\end{aligned}
$$

Logic as a regularizer

undirected StarAI approach and (soft) constraints Semantic Loss:

- Use logic as constraints (very much like "propositional MLNs)
- Semantic loss

$$
\operatorname{SLoss}(T) \propto-\log \sum_{X \models T} \prod_{x \in X} p_{i} \prod_{\neg x \in X}\left(1-p_{i}\right)
$$

- Used as regulariser

$$
\text { Loss }=\text { TraditionalLoss }+w . \text { SLoss }
$$

- Use weighted model counting, close to StarAI

Logic Tensor Networks
 undirected StarAl approach and (soft) constraints

$P(x, y) \rightarrow A(y)$, with $\mathcal{G}(x)=\mathbf{v}$ and $\mathcal{G}(y)=\mathbf{u}$

Serafini \& Garcez

Semantic Based Regularization
 undirected StarAl approach and (soft) constraints

the logic is encoded in the network how to reason logically?

Part 2: The Recipe

A recipe for NeSy

STEP 1

1. Take your favorite symbolic (logic / rule based) representation
2. Interpret neural networks as neural predicates
3. Turn the $0 / 1$ or True/False into Probabilistic or Fuzzy Interpretation
(applied on DeepProbLog) layout Pieter Robberechts
OLuc De Raed

A recipe for NeSy

STEP 1

1. Take your favorite symbolic (logic / rule based) representation
2. Interpret neural networks as neural predicates
(applied on DeepProbLog)

ayout Pieter Robberechts

NeSy Data Point

NeSy Model
alarm(B,E) IF burglary(B) OR earthquake(E) calls(B, E, X) IF alarm(B, E) AND hears_alarm(X)

Logic Facts

hears_alarm(mary)
hears_alarm(john)
Neural Predicates
burglary (B) IF neural-net (image_perception(B)) $_{\text {IF }}^{\text {earthquake (E) }}$ IF neuralearthquake(E) IF neural-net(signai analysis (E))

Neural Net Modules
image_perception $=$ signal_analysis $=$

A recipe for NeSy

4. Construct logical proof / explanation for example

NeSy Network

A recipe for NeSy

STEP 2
4. Construct logical proof / explanation for example
5. Add the neural networks to the corresponding predicates (reparametrise)

layout Pieter Robberechts
© Luc De Raedt

A recipe for NeSy

Where do the numbers come from ?
From logic formulae to circuits

$$
\ell((A \wedge B) \rightarrow C) \quad \ell(Q)
$$

A recipe for NeSy

STEP 3
4. Construct logical proof / explanation for example
5. Add the neural networks to the corresponding predicates (reparametrise)
6. Replace OR and AND by \oplus and \otimes
7. Differentiate
layout Pieter Robberechts
© Luc De Raedt

A recipe for NeSy

Where do the numbers come from?

From logic formulae to circuits

$$
\ell_{F}((A \wedge B) \rightarrow C) \quad \ell(Q)
$$

What is the algebraic structure ? = Parametric circuit

The query Q determines the structure (potentially after knowledge compilation)

A recipe for NeSy

Where do the numbers come from ?
Probability
Why Compile
$P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Knowledge Compilation (computationally expensive)

Probabilistic structure is explicit in compiled formula.

A recipe for NeSy

Where do the numbers come from

Probability

Knowledge Compilation (computationally expensive)
Probabilistic structure is explicit in compiled formula.

Logic as soft constraints Markov Logic
 Propositional logic

calls(mary) <- hears_alarm(mary) \wedge alarm
calls(john) <- hears_alarm(john) \wedge alarm
\{burglary,
hears_alarm(john),
alarm,
calls(john)\}
probability of world ${ }^{-} e^{\wedge} 10 \times e^{\wedge} 20 \times e^{\wedge} 30$
using weighted model counting (WMC)
weights/probabilities are on the formulae (soft constraints)
the higher the weight , the harder or more logical the constraint

Probability

$$
\begin{array}{ll}
\mathrm{w}(\mathrm{f} 1)=\mathrm{e}^{\wedge} 10 & \mathrm{w}(\text { not } \mathrm{f} 1)=\mathrm{e}^{\wedge} 0=1 \\
\mathrm{w}(\mathrm{f} 2)=\mathrm{e}^{\wedge} 20 & \mathrm{w}(\text { not } \mathrm{f} 2)=\mathrm{e}^{\wedge} 0=1 \\
\mathrm{w}(\mathrm{f} 3)=\mathrm{e}^{\wedge} 30 & \mathrm{w}(\text { not } \mathrm{f} 3)=\mathrm{e}^{\wedge} 0=1
\end{array}
$$

(need to normalise to get probability distribution)

Logic as soft constraints

Probabilistic Soft Logic [Bach \& Getoor]

Propositional logic
10: calls(mary) <- hears_alarm(mary) ^ alarm
20 : calls(john) <- hears_alarm(john) \wedge alarm
30: alarm <- earthquake v burglary
atoms are no longer true or false in worlds logic : a constraint is satisfied (1) or not (0) by but true or false to a certain degree fuzzy logic : the distance to satisfaction the higher the distance, the less likely the world
calls(john) <- hears_alarm(john) ^ alarm
$\begin{array}{lll}\geq 0.5 & 0.7 & 0.8\end{array}$
$A \wedge B=\min (1,1.5-1)=0.5$
Rule evaluates to $\min (1,1-0.5+0.3)=0.8$ when calls $(j$ ohn $)=0.3$
FuzZy $\quad w=e^{\wedge}[-20 x(1-0.8)]$ See Van Krieken et al AIJ 22

Part 3: DeepStochLog and DeepProbLog

Two types of probabilistic models / programs

- Based on a random graph model
- Bayesian Nets and ProbLog -> DeepProbLog [AIJ 21]
- Based on a random walk model
- Probabilistic grammars and Stochastic Logic Programs [Muggleton] -> DeepStochLog [AAAI 22]

Our method/recipe:
Take an existing probabilistic logic and inject neural predicates that act ako interface

Logic Programs

as in the programming language Prolog

Propositional logic program
Two proofs (by refutation)
From Prolog to ProbLog

burglary.

hears_alarm(mary).
earthquake.
hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(mary) :- alarm, hears_alarm(mary).
calls(john) :- alarm, hears_alarm(john).

A proof-theoretic view

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 :: burglary.

0.3 ::hears_alarm(mary).

Probabilistic facts
0.05 ::earthquake.
0.6 ::hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(mary) :- alarm, hears_alarm(mary)

> Key Idea (Sato \& Poole) the distribution semantics:
> unify the basic concepts in logic and probability:
> random variable ~ propositional variable
> an interface between logic and probability

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program
0.1 :: burglary.
0.3 ::hears_alarm(mary).
0.05 ::earthquake.
0.6 ::hears_alarm(john)
alarm :- earthquake.
alarm :- burglary.
calls(mary) :- alarm, hears_alarm(mary).
calls(john) :- alarm, hears_alarm(john).

Disjoint sum problem

P(alarm) = P(burg OR earth) $=P($ burg $)+P($ earth $)-P($ burg AND earth $)$ $=/=\mathrm{P}($ burg $)+\mathrm{P}($ earth $)$

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 :: burglary.
0.3 ::hears_alarm(mary).
0.05 ::earthquake
0.6 ::hears_alarm(john).
alarm :- earthquake
alarm :- burglary.
calls(mary) :- alarm, hears_alarm(mary).
calls(john) :- alarm, hears_alarm(john).

Two proofs (by refutation)

Probabilistic Logic Program Semantics

earthquake.
[Vennekens et al, ICLP 04]
0.05 : burglary probabilistic causal laws
0.6::alarm :- earthquake.
0.8::alarm :- burglary.

$\mathrm{P}($ alarm $)=0.6 \times 0.05 \times 0.8+0.6 \times 0.05 \times 0.2+0.6 \times 0.95+0.4 \times 0.05 \times 0.8$
52

Probabilistic Logic Program Semantics

Bayesian net encoded as Probabilistic Logic Program PLPs correspond to directed graphical models

ProbLog has both (directed) probabilistic graphic models,
the programming language Prolog (and probabilistic databases) as special case
Flexible and Compact Relational Model for Predicting Grades

"Program" Abstraction:

- S, C logical variable representing students, courses
- the set of individuals of a type is called a population
- $\operatorname{Int}(\mathrm{S})$, Grade(S, C), D(C) are parametrized random variables

Grounding:

- for every student s, there is a random variable Int(s)
for every course c , there is a random variable $\mathrm{Di}(\mathrm{c})$ for every s, c pair there is a random variable Grade(s,c) all instances share the same structure and parameters
sting, Natarajan, Poole: Statistical Relational AI

ProbLog by example: Grading

Shows relational structure

grounded model: replace variables by constants
Works for any number of students / classes (for 1000 students and 100 classes, you get 101100 random variables); still only few parameters

With SRL / PP
build and learn compact models,
from one set of individuals -> other sets;
reason also about exchangeability,
build even more complex models,

Dynamic networks

Travian: A massively multiplayer real-time strategy game

Can we build a model of this world?
Can we use it for playing better?

[Thon et al, MLJ II]

Neural predicate

- Neural networks have uncertainty in their predictions
- A normalized output can be interpreted as a probability distribution
- Neural predicate models the output as probabilistic facts
No changes needed in the probabilistic host language

PART 3 B

From ProbLog to DeepProbLog

The neural predicate

The output of the neural network is probabilistic facts in DeepProbLog

Example:
nn(mnist_net, [X], Y, [0 ... 9]) : : digit(X,Y).
Instantiated into a (neural) Annotated Disjunction:

0.04: digit

1,0)
$1,0) ~ ; ~$
$1,7) ~ ; ~$; 0.35::digit it (7, 1,1) ; ...; 0.53::digit(1,7) ; ... ; 0.014::digit(1,9).

DeepProbLog exemplified: MNIST addition

Task: Classify pairs of MNIST digits with their sum	3	58
Benefit of DeepProbLog:	0.414	
- Encode addition in logic	a 211	

- Separate addition from digit classification
nn(mnist_net, [X$], \mathrm{y},[0$... 9]) :: $\operatorname{digit(X,Y).}$
$\operatorname{addition}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}):-\operatorname{digit}(\mathrm{X}, \mathrm{N} 1), \operatorname{digit}(\mathrm{Y}, \mathrm{N} 2), \mathrm{Z}$ is $\mathrm{N} 1+\mathrm{N} 2$.

Examples:

MNIST Addition

- Pairs of MNIST images, labeled with sum
- Baseline: CNN
- Classifies concatenation of both images into classes 0 ... 18
- DeepProbLog:
- CNN that classifies images into $0 \ldots 9$
- Two lines of DeepProblog code

- Result:
- Amerbiterations necessary

DeepProbLog exemplified:
 MNIST addition

Task: Classify pairs of MNIST digits with their sum		
Benefit of DeepProbLog:	3	5
- Encode addition in logic	044	

- Separate addition from digit classification
nn(mnist_net, [X], Y, [0 ... 9]) :: digit(X,Y).
addition(X,Y,Z) :- $\operatorname{digit(X,N1),~} \operatorname{digit(Y,N2),~} \mathrm{Z}$ is $\mathrm{N} 1+\mathrm{N} 2$.
$\operatorname{addition}(\mathbf{B}, \boldsymbol{\pi}, 8):-\operatorname{digit}(\boldsymbol{3}, \mathrm{N} 1), \operatorname{digit}(\boldsymbol{\pi}, \mathrm{N} 2), 8$ is $\mathrm{N} 1+\mathrm{N} 2$.
Examples:

Example

Learn to classify the sum of pairs of MNIST digits
Individual digits are not labeled!
E.g. (3, 5, 8)

Could be done by a CNN: classify the concatenation of both images into 19 classes

However: $35047+921=?$

Multi-digit MNIST addition with MNIST

number ([] , Result , Result) number ([H| T],Acc, Result) :$\operatorname{digit}(\mathrm{H}, \mathrm{Nr}), \mathrm{Acc} 2$ is $\mathrm{Nr}+10^{*}$ Acc , number (T , Acc2, Result)
number (X,Y) :- number (X, 0 , Y)
multiaddition(X, Y, Z) :number ($\mathrm{X}, \mathrm{X} 2$)
number ($\mathrm{Y}, \mathrm{Y} 2$)
Z is $\mathrm{X} 2+\mathrm{Y} 2$

69

Noisy Addition

```
m(classifier, [x], \, [0 .. `]) :M digit(x,y
t(0.2) :: noisy.
1/19 :: uniform(X,Y,0) ; ...; 1/19 :: uniform(X,Y,18)
addition(X,Y,Z) :- noisy, uniform(X,Y,Z)
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.
(a) The DeepProbLog program.
\begin{tabular}{lrrrrrr} 
& 0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 \\
\hline Baseline & 93.46 & 87.85 & 82.49 & 52.67 & 8.79 & 5.87 \\
DeepProbLog & 97.20 & 95.78 & 94.50 & 92.90 & 46.42 & 0.88
\end{tabular}
\begin{tabular}{lllllll} 
DeepProbLog & 97.20 & 95.78 & 94.50 & 92.90 & 46.42 & 0.88
\end{tabular}
DeepProbLog w/ explicit noise }\begin{array}{llllllll}{96.64}&{95.96}&{95.58}&{94.12}&{73.22}&{2.92}
Learned fraction of noise 

\section*{ProbLog Inference}

Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit
0.1 :: burglary.
0.5 :: hears_alarm(mary).
0.2 :: earthquake
0.4 :: hears_alarm(john).
alarm :- earthquake.
alarm :- burglary.
calls(X) :- alarm, hears_alarm(X).

\section*{ProbLog Inference}

Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query (only relevant part!)
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit
0.1 :: burglary. Query
0.5 :: hears_alarm(mary)
(calls(mary))
0.2 :: earthquake.

P(calls(mary))
0.4 :: hears_alarm(john).
alarm :- earthquake
alarm :- burglary.
calls(mary) :- alarm, hears_alarm(mary).
calls(john) :- alarm, hears_alarm(john).

\section*{ProbLog Inference}

Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit (knowledge compilation)
4. Evaluate the arithmetic circuit


\section*{ProbLog Inference}

Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query
2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit
0.1 :: burglary.
0.5 :: hears_alarm(mary).
0.2 :: earthquake.
0.4 :: hears_alarm(john).
alarm :- earthquake

\section*{calls(mary)}
\(\leftrightarrow\)
alarm :- burglary.
calls(mary) :- alarm, hears_alarm(mary)
calls(john) :- alarm, hears_alarm(john).

\section*{Useful Semirings}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline task & A & \(e^{\text {® }}\) & \(e^{8}\) & \(\oplus\) & \(\otimes\) & \(\alpha(v)\) & \(\alpha(\neg v)\) & ref \\
\hline SAT & \{true, false\} & false & true & \(v\) & \(\wedge\) & true & true & \[
\begin{aligned}
& \hline \mathrm{B}, \mathrm{BT}, \\
& \mathrm{G}, \mathrm{GK}, \\
& \mathrm{~K}, \mathrm{~L}, \mathrm{M} \\
& \hline
\end{aligned}
\] \\
\hline \#SaT & N & 0 & 1 & + & . & 1 & 1 & \[
\begin{gathered}
\text { B, G } \\
\text { GK, K, } \\
\text { L }
\end{gathered}
\] \\
\hline WMC & \(\mathbb{R}^{\text {> }}\) 0 & 0 & 1 & + & . & \(\in \mathbb{R}>0\) & \(\in \mathbb{R}>0\) & \\
\hline PROB & \(\mathbb{R}^{2} \times 0\) & 0 & 1 & + & . & \(\in[0,1]\) & \(1-\alpha(v)\) & \[
\begin{aligned}
& \mathrm{B}, \mathrm{BT}, \\
& \mathrm{E}, \mathrm{G}, \mathrm{~K}
\end{aligned}
\] \\
\hline SENS & \(\mathbb{R}[\mathcal{V}]\) & 0 & 1 & + & & \(v\) or \(\in[0,1]\) & \(1-\alpha(v)\) & K \\
\hline GRAD & \(\mathbb{R}>0 \times \mathbb{R}\) & (0,0) & (1,0) & Eq. (4) & Eq. (5) & Eq. (2) & Eq. (3) & E, K \\
\hline MPE & \(\mathbb{R}_{\geq 0}\) & 0 & 1 & max & . & \(\in[0,1]\) & \(1-\alpha(v)\) & \[
\begin{gathered}
\mathrm{B}, \mathrm{BT}, \\
\mathrm{G}, \mathrm{~K}, \mathrm{~L}, \\
\mathrm{M}
\end{gathered}
\] \\
\hline S-Path & \(\mathbb{N}^{\infty}\) & \(\infty\) & 0 & min & + & \(\in \mathbb{N}\) & 0 & \[
\begin{gathered}
\mathrm{BT}, \mathrm{GK}, \\
\mathrm{~K}
\end{gathered}
\] \\
\hline W-PATH & \(\mathbb{N}^{\infty}\) & 0 & \(\infty\) & max & min & \(\in \mathbb{N}\) & \(\infty\) & BT \\
\hline FUZZY & [0,1] & 0 & , & max & min & \(\in[0,1]\) & , & GK, M \\
\hline kWEIGHT & \(\{0, \ldots, k\}\) & \(k\) & 0 & min & \(+^{k}\) & \(\in\{0, \ldots, k\}\) & \(\in\{0, \ldots, k\}\) & M \\
\hline \(\mathrm{OBDD}_{<}\) & \(\mathrm{OBDD}_{<}(\mathcal{V})\) & \(\mathrm{OBDD}_{<}(0)\) & OBDD \({ }_{\text {c }}(1)\) & V & , & \(\mathrm{OBDD}_{<}(v)\) & \(\mathrm{OBBD}_{<}(v)\) & K \\
\hline WHY & \(\mathcal{P}(\mathcal{V})\) & , & ) & \(\cup\) & \(\cup\) & \{v\} & n/a & GK \\
\hline RA \({ }^{+}\) & \(\mathbb{N}(\nu)\) & 0 & 1 & + & . & \(v\) & n/a & GK \\
\hline
\end{tabular}

Table 1: Examples of commutative semirings and labeling functions. The WHY and \(\mathcal{R} \mathcal{A}^{+}\)provenance semirings apply to positive literals only. Reference key: B (Bacchus et al., 2009), BT (Baras and Theodorakopoulos, 2010), E (Eisner, 2002), G Goodman, 1999), GK (Green et al., 2007), K (Kimmig et al, 2011) L (Larrosa et al., 2010), M (Meseguer et al., 2006); more examples can be found in these references. From Kimmig,Vanden Broeck and De Raedt, 2016

\section*{Gradient Semiring}
nn(mnist_net, [X], Y, [0 ... 9] ) :
digit(X,Y).
addition(X,Y,Z) :-
digit(X,N1),
digit(Y,N2),
\(Z\) is \(\mathrm{N} 1+\mathrm{N} 2\).
The ACs are differentiable and there is an interface with the neural nets
(Pretty elegant in ProbLog we use the "gradient" semi-ring)


\section*{Program Induction/Sketching}

In Neural Symbolic methods
- Rule Induction - work with templates
\[
P(X):-R(X, Y), Q(Y)
\]
- and have the "predicate" variables / slots P,Q,R determined by the NN
- Simpler form, fill just a few slots / holes

Approach similar to 'Programming with a Differentiable Forth Interpreter' \({ }^{[1]} \partial 4\)
- Partially defined Forth program with slots / holes
- Slots are filled by neural network (encoder / decoder)

Fully differentiable interpreter: NNs are trained with input / output examples

\section*{Example DeepProbLog}

\section*{neural predica}
hole ( \((, Y, Y, Y, Y\) :-:
hole \((X, Y, Y, X)\) : \(=\)
bubble sort
bubble( \((X]\), ,, X\()\).
bubble( \([\mathrm{H} 1, \mathrm{H} 21 \mathrm{~T} \cdot \mathrm{X} \mid 1 \mathrm{~T} 11 \mathrm{X})\) : hole(H1,H2,X1,X2),
bubble( \((\mathrm{X} 217, \mathrm{~T} 1, \mathrm{X})\).
bubblesort([,L,L,L).
bubblesort(L, LL3,Sorte bubblesort(LL2,[XILZ3],Sorted)

(a) Accuracy on the sorting and addition problems (results for \(\partial 4\) reported by Bošnjak et al. [2017]).

sort(L,L2) :- bubblesort(L, П, L, L2

\section*{DeepSeaProbLog}
discrete and continuous distributions [De Smet UAI 23] useful for robotics and perception
dim is neural net returning parameters of normal distribution.
length (Obj) ~ normal (dim(Obj,Image)).
large (Obj) :- length (Obj) > 100.


\section*{Soft Unification}
- NTP :"grandpa" softly unifies with "grandfather", as embeddings are close
- DeepProblog : define
softunification(X,Y) :- embed(X,EX), embed(Y,EY), rbf(EX,EY).
softunification \((X, Y)\) returns I if \(X\) and \(Y\) unify
otherwise returns \(\exp \left(\frac{-\left\|e_{X}-e_{Y}\right\|_{2}}{2 \mu^{2}}\right)\)
grandPaOf( \(X, Y\) ) :- softunification(grandPaOf,R), \(R(X, Y)\).

\section*{Neural Theorem Prover}
 A A visual depiction of the NTP recursive computation graph construction, applied to a toy KB (top left). Dash-s-eparated

82 Minervini Bosnjak Rocktäschel Riedel

Probabilistic Logic Shield for Reinforcement Learning


\section*{DeepStochLog: Neural Definite Clause Grammars}

\section*{DeepStochLog}
- Little sibling of DeepProbLog [Winters, Marra, et al AAAI 22]
- Based on a different semantics
- probabilistic graphical models vs grammars
- random graphs vs random walks
- Underlying StarAl representation is Stochastic Logic Programs (Muggleton, Cussens)
- close to Probabilistic Definite Clause Grammars, ako probabilistic unification based grammar formalism
- again the idea of neural predicates
- Scales better, is faster than DeepProbLog

\section*{PART 3 B}

\section*{DeepStochLog : Neural} Definite Clause Grammars

CFG: Context-Free Grammar
```

E --> N
_-> E, P, N
P --> ["+"]
N --> ["0"]
N --> ["1"]
N --> ["9"]

```

\section*{PCFG: Probabilistic Context-Free Grammar}
0.5 : : E --> N
0.5 : : E --> E, P, N
```

|1.0:: P --> ["+"]
00.1 :: N --> ["0"]
0.1 :: N --> ["1"]

```
0.1 : : N --> ["9"]


\section*{Useful for:}
- What is the most likely parse for this sequence of terminals? \(\qquad\)
- What is the probability of generating this string?
```

e(N) $-->n(N)$.
e(N) --> e(N1), p, n(N2),
$\{\mathrm{N}$ is $\mathrm{N} 1+\mathrm{N} 2\}$.

- --> ["+"].
n(0) --> ["0"].
n(1) --> ["1"].
...
n(9) --> ["9"].

```

Useful for:
- Modelling more complex languages (e.g. context-sensitive)
- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification)
- Extra inputs \& outputs aside from terminal sequence (through unification of input variables)

\section*{NDCG: Neural Definite Clause Grammar (= DeepStochLog)}
\(.5:: e(N)\)--> \(n(N)\)
\(0.5:: e(\mathbb{N})\)--> e(N1),p, \(n(\mathbb{N} 2)\),

nn(number_nn, \([\mathrm{X}],[\mathrm{Y}],[\) digit \(]):\) :
\(\mathrm{n}(\mathrm{Y}) \rightarrow[\mathrm{X}]\).
digit(Y) :-
member (Y, \([0,1,2,3,4,5,6,7,8,9])\).

\(0.5^{*} 0.5 * 0.5{ }^{*} \mathrm{p}_{\text {number }}\)

\section*{Useful for:}
- Subsymbolic processing: e.g. tensors as terminals
- Learning rule probabilities using neural networks

Deriving probability of goal for given terminals in NDCG

\section*{DeepStochLog Inference}

And/Or tree + semiring for different inference types

Probability of goal
Most likely derivation


\section*{Inference optimisation}
- Inference is optimized using
- SLG resolution: Prolog tables the returned proof tree(s), and thus creates forest
\(\xrightarrow[\rightarrow]{\rightarrow}\) Allows for reusing probability calculation results from intermediate nodes

Table 6: Q4 Parsing time in seconds (T2). Com-
parison of the DeepStochLog with and without parison of the DeepStochLog with and without
tabling (SLD vs SLG resolution). Lengths \# Answers No Tabling Tabling
\begin{tabular}{rrrr} 
Lengths & \# Answers & No Tabling & Tabling \\
\hline 1 & 10 & 0.067 & 0.060 \\
3 & 95 & 0.081 & 0.096 \\
5 & 1066 & 3.78 & 0.95 \\
7 & 10386 & 30.42 & 10.95 \\
9 & 66298 & 1449.23 & 1322.26 \\
11 & 416517 & timeout & 1996.09 \\
\hline
\end{tabular}

\footnotetext{
- Batched network calls: Evaluate all the required neural network queries first
\(\rightarrow\) Very natural for neural networks to evaluate multiple instances at once using batching
\& less overhead in logic \& neural network communication
}


\section*{Classic grammars, but with MNIST images as terminals}

T3: Well-formed brackets as input
(without parse). Task: predict parse

\section*{01001011}
\(\rightarrow\) parse \(=()(\) () ())

T4: inputs are strings \(a^{k b l} c^{m}\) (or permutations of [a,b,c], and \((k+1+m) \bmod 3=0)\). Predict 1 if \(\mathrm{k}=\mathrm{l}=\mathrm{m}\), otherwise 0
Mr0023 \(=1\)
7חODD2 =

Tate 3. The parse accuracy (\%) on the well-formed parentheses dataset (T3)
\begin{tabular}{|c|c|c|c|}
\hline Method & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\underset{10}{\text { Maximum expression length }} 14\)}} \\
\hline & & & \\
\hline DeepProbLog & \(100.0 \pm 0.0\) & \(99.4 \pm 0.5\) & \(99.2 \pm 0.8\) \\
\hline DeepStochLog & \(100.0 \pm 0.0\) & \(100.0 \pm 0.0\) & \(100.0 \pm 0.0\) \\
\hline \multicolumn{4}{|l|}{Table 4: The accuracy (\%) on the \(a^{n} b^{n} c^{n}\) dataset (T4) .} \\
\hline & \multicolumn{3}{|c|}{Expression length} \\
\hline Method & 3-12 & 3-15 & 3-18 \\
\hline DeepProbLog & \(99.8 \pm 0.3\) & timeout & timeout \\
\hline DeepStochLog & \(99.4 \pm 0.5\) & \(99.2 \pm 0.4\) & \(98.8 \pm 0.2\) \\
\hline
\end{tabular}

\section*{Citation networks}

T5: Given scientific paper set with only few labels \& citation network, find all labels

Table 5: Q3 Accuracy (\%) of the classifica tion on the test nodes on task T5
\begin{tabular}{lrr}
\hline Method & Citeseer & Cora \\
\hline ManiReg & 60.1 & 59.5 \\
SemiEmb & 59.6 & 59.0 \\
LP & 45.3 & 68.0 \\
DeepWalk & 43.2 & 67.2 \\
ICA & 69.1 & 75.1 \\
GCN & 70.3 & 81.5 \\
\hline DeepProbLog & timeout & timeout \\
DeepStochLog & 65.0 & 69.4 \\
\hline
\end{tabular}

\section*{Challenges}
- For NeSy,
- scaling up
- which models and which knowledge to use
- large scale life applications
- peculiarities of neural nets \& fuzzy logic
dynamics / continuous
- This is an excellent area for starting researchers / PhDs


```

