How to make logics
neurosymbolic

Luc De Raedt
Giuseppe Marra & Vincent Derkinderen & Sebastijan Dumancic
& Robin Manhaeve & Thomas Winters & Angelika Kimmig

© Luc De Raedt and colleagues

IRl
[GP] LEUVEN.AI INSTITUTE
) (S

Learning and Reasoning
both needed o

R
DANIEL

System | - thinking fast - can do things like 2+2 = ? and recognise |, ;xiyax
objects in image

System 2 - thinking slow - can reason about solving complex
problems - planning a complex task

alternative terms — data-driven vs knowledge-driven, symbolic vs
subsymbolic, solvers and learners, neuro-symbolic...

A lot of work on integrating learning and reasoning,
neural symbolic computation to integrate logic /
symbols reasoning with neural networks

see also arguments
by Marcus, Darwiche, Levesque, Tenenbaum, Geffner,
Bengio, Le Cun, Kaut%,

Real-life problems involve
two important aspects.

Who can go first ?

A. The red car
B. The blue van
C. The white car

Thinking fast

MAIN PARADIGM in Al
Focus on Learning

NEURAL

https://www.theorie-blokken.be/nl/gratis-proefexamen

Thinking slow = reasoning

TWO MAIN PARADIGMS in Al

PROBABILITY

LOGIC

Their integration has been well studied in
Probabilistic (Logic) Programming and Statistical Relational Al (StarAl)

Neurosymbolic =

Neuro + Logic
A WARNING

TALK MAY NOT
COVER ALL of NESY

LOGIC

NEURAL

Neurosymbolic =
Neuro 4 Logic + Probability
6090

o5
\l\eﬂ\‘\

PROBABILITY

LOGIC

NEURAL

see Manhaeve et al. NeSy Book

interpret PROBABILITY broadly (including fuzzy)

The NeuroSymbolic
alphabet-soup

DiffLog

NLProlog
e
Scallop
]
NeurASP

DeepStochLog

check our survey on arxiv — Marra, Dumancic, Manhaeve & De Raedt, 23
8

& @

StarAl and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20; Marra et al, arxiv]

Provide recipe for

Kautz

“an interface layer (<> pipeline) between neural &
symbolic components”

Part 1: NeSy Al - a little Survey

Part 2: The Recipe

Part 3: DeepStochLog and
DeepProblLog

Part 1: NeSy Al - a little survey

check our survey on arxiv — Marra, Dumancic, Manhaeve & De Raedt, 23

Logic Programs

as in the programming language Prolog

Propositional logic program Two proofs (by refutation)

burglary.

:- calls_mary.
hears_alarm_mary. P

:- alarm, hears_alarm_mary.

earthquake.
hears_alarm_john. :- earthquake, hears_alarm_m
l - burglary, hears_alarm_|
alarm :— earthquake. - hears_alarm_mary.
- hears_alarm_mary,
alarm :— burglary. - l -
calls_mary :— alarm, hears_alarm_mary. 0

calls_john :— alarm, hears_alarm_john.
A proof-theoretic view

Logic as constraints

as in SAT solvers
Propositional logic Model / Possible World

IFF AND
calls(mary) < hears_alarm(mary) A alarm
(mary) - (mary) { burglary,

hears_alarm(john),
calls(john) < hears_alarm(john) A alarm
alarm,

OR .
alarm < earthquake v burglary calls(john)}

the facts that are true
in this model / possible world

A model-theoretic view

Two types of probabilistic graphic:
models and StarAl systems

<‘Friends(A.B)/>

0.1 ::burglary.

CFrendsAA)Smokes(A) | Smokes(®)

0.05 :: earthquake.
alarm :— earthquake.

alarm :— burglary.

o N\ ommmn
‘<(\:ancer(A/)> - Q(j")ncer(B)/ :‘
R _Friends(B,A) —

@ @ 1.5 Vvx Smokes(x) = Cancer(x)

1.1 Vvx,y Friends(x,y) = (Smokes(x) < Smokes(y))

0.7::calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Probabilistic Logic Programs Markov Logic

ProbLog
) undirected
dlre_cted Markov Net
Bayesian Net model theoretic

key representatives

Two types of Neural ===
Symbolic Systems

Just like in StarAl

Logic as a kind of neural Logic as the regularizer
(reminiscent of Markov Logic
program Networks)

directed StarAl approach and
logic programs undirected StarAl approach and
(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

Just like in StarAl

Logic as a neural program

directed StarAl approach and logic programs

KBANN (Towell and Shavlik Al] 94)

* Turn a (propositional) Prolog program into a
neural network and learn

Key A
A - B, Z.
A :- B, 2.REWRITE , ,_ 4. A <~
— o ﬁ B Z
B ¢, Dr B - B, conjunction 3
B :-E, F, G. B :i-C, D. T 5,
Z :— Y, not X. B’ :— E, F, G. unnegated B’ B’ v o
Y :- S, T. Z - Y, not X. dependency |
! Y -8, T. | eeeeeeeeee b\ /ﬂ /C\
negated C D E F G S T
dependency c—Step 1

Logic as a neural program

directed StarAl approach and logic programs

f— Steps 4-6

ADD LINKS — ALSO SPURIOUS ONES HIDDEN UNIT

and then learn

iIs of activation & loss functions not mentioned)
18

Lifted Relational Neural Networks

directed StarAl approach and logic programs

® Directed (fuzzy) NeSy

® similar in spirit to the Bayesian Logic Programs and
Probabilistic Relational Models

® Of course, other kind of (fuzzy) operations for AND,
OR and Aggregation (cf. later)

Fact neurons Atoms neurons

—

ida) g
ihams(é\idn) s

xxxxxxxx

el \1 Rule neurons
v -
— N " fo(atan)| Aserntion neeons
[A
pmm(,sg(A) (orse()) (foni() v foal(star) | Atom neuron
2/ - *)%,
- i parent(star,cheyenne) H parent(star,cheyenne) L
. j{fnal(sm) e
L 2

£ —~ ~ [1 ,,,,, (cheyenne) %2 horse(cheyenne) [
<s1bl.\ng(A‘E) (A /@, foal(A) v foal(ftﬂ-“)
L
l‘ dnkom)ﬂ{ i dakotta)
| foal(sts
v ol(star),

horse(dakotta) || horse(dakotta) [
v

19 [Sourek, Kuzelka, et al JAIR]

directed StarAl approach and logic programs

Neural Theorem Prover

‘Towards Neural Theorem Proving at Scale

TN 3.1 father0£(X,2)
ke | 3.2 parent0£(Z,Y)

HEN HEN HEN HEN
o

the Idgic iseAncode in the étwork
: how to reason logically ?

[Rocktischel Riedel, NeurIPS 17; Minervini et al.]

Two types of Neural s
Symbolic Systems

Just like in StarAl

Logic as a kind of neural Log.|c. as the regularlzer
(reminiscent of Markov Logic

program Networks)

directed StarAl approach and

logic programs undirected StarAl approach and

(soft) constraints

Also, many NeSy systems are doing
knowledge based model construction KBMC
where logic is used as a template

4 2.

Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

This constraint should be satisfied

(ﬂl'l VAN WA xg)\/
(_|a3‘1 A\ o AN _|£U3)\/
(1 A\ —z9 A\ —3)

@» figures and example from Xu et al., ICML 2018
2

Logic as constraints

undirected StarAl approach and (soft) constraints

multi-class classification

Probability that constraint is satisfied
(1—=21)(1 — x2)xs+
(1 — .’171)132(1 — 133)+

z1(1 — z2)(1 — z3)

basis for SEMANTIC LOSS
(weighted model counting)

23

Logic as a regularizer

undirected StarAl approach and (soft) constraints
Semantic Loss:

® Use logic as constraints (very much like
“propositional MLNs)

® Semantic loss

SLoss(T) o —log Z H pi H (1 —pi)
XETzeX —zeX
® Used as regulariser

Loss = Traditional Loss + w.S Loss

® Use weighted model counting , close to

@@ StarAl

Logic Tensor Networks

undirected StarAl approach and (soft) constraints
P(z,y) = A(y),withG(z) = vand G(y) = u

G(P(v,u) =+ A(u)

Serafini & Garcez

Semantic Based Regularization

undirected StarAl approach and (soft) constraints

Evidence Predicate

F o=
Fp = VdYd Rd,d) = ((Ad) A A(d)) V (~A(d) A ~A(d)) Groundings
C = {di,d2} Pa(di) =1
R(dy,dy) =1
Output
Output Layer

Quantifier Layers

tr(Paldr), fa(dy)) trn (R(d1,d2), fa(dy), fa(da))

—__—
the logic is encoded in the network

how to reason logically ?
Diligenti et al. AlJ

Propositional Layer

Just like in StarAl

Logic as the regularizer

Logic as a kind of neural (reminiscent of Markov Logic
program Networks)
directed StarAl h and .
rec elogi:rprozpr:r::: chan undirected StarAl approach and
(soft) constraints

Consequence :
the logic is encoded in the network

the ability to logically reason is lost
logic is not a special case

Part 2: The Recipe

A recipe for NeSy

STEP 1

Take your favorite
symbolic (logic / rule
based) representation

(applied on DeepProbLog)
layout Pieter Robberechts

© Luc De Raedt

NeSy Data Point

calls(image32, signal42, mary)

image32 = signald2 = (& -
[,,....‘....,..,

NeSy Model

Logic Rules

alarm(B,E) IF burglary(B) OR earthquake(E).
calls(B,E,X) IF alarm(B,E) AND hears_alarm(X).

Logic Facts

hears_alarm(mary) .
hears_alarm(john).

Neural Net Modules

image_perception = &3 signal_analysis = &>

A recipe

STEP 1

1. Take your favorite

symbolic (logic / rule
based) representation

Interpret neural networks
as neural predicates

(applied on DeepProbLog)

layout Pieter Robberechts
© Luc De Raedt

for NeSy

NeSy Data Point

calls(image32, signal42, mary)

image32 = | signald2 = ~-w%—

NeSy Model

Logic Rules

alarm(B,E) IF burglary(B) OR earthquake(E).
calls(B,E,X) IF alarm(B,E) AND hears_alarm(X).

Logic Facts

hears_alarm(mary) .
hears_alarm(john).

Neural Predicates

burglary(B) IF
earthquake(E) IF

Neural Net Modules

image_perception = §> signal_analysis = g

e
7

A recipe for NeSy

STEP 1

Take your favorite
symbolic (logic / rule
based) representation

Interpret neural networks
as neural predicates

Turn the 0/1 or True/False
into Probabilistic or Fuzzy
Interpretation

(applied on DeepProbLog)

layout Pieter Robberechts
© Luc De Raedt

NeSy Data Point

calls(image32, signal42, mary)

image32 = signald2 = (& -
[o

NeSy Model

Logic Rules

alarm(B,E) IF burglary(B) OR earthquake(E).
calls(B,E,X) IF alarm(B,E) AND hears_alarm(X).

Logic Facts Probability
hears_alarm(mary) . 0.3
hears_alarm(john). 0.6

Neural Predicates

burglary(B) IF
earthquake (E) IF

Neural Net Modules

image_perception = } signal_analysis = {}

A recipe

STEP 2

4. Construct logical proof /
explanation for example

layout Pieter Robberechts
© Luc De Raedt

for NeSy

NeSy Network

Logic Circuit

P[calls(image32, signald42, mary)] = 0.2406

earthquake burglary hears_alarm(mary)

A recipe for NeSy

NeSy Network

STEP 2

Logic Circuit

P[calls(image32, signald42, mary)] = 0.2406
Construct logical proof /
explanation for example

Add the neural networks to
the corresponding

predicates (reparametrise) earthquake burglary hears_alarm(mary)
+ +
0.8 0.01 0.3
1 '
\"\‘7//6'67\4"7 ‘:g‘}n
1 1
) T
e |i.l4

layout Pieter Robberechts
© Luc De Raedt

A recipe for NeSy

STEP 3 NeSy Network

Logic Circuit

P[calls(image32, signald42, mary)] = 0.2406
4. Construct logical proof /
explanation for example

5. Add the neural networks
to the corresponding
predicates (reparametrise)

earthquake burglary hears_alarm(mary)
t t

0.8 0.01 0.3
6. Replace OR and AND by A A
@ and ® T 1
Y
7. Differentiate -
Algebraic Structure
layout Pieter Robberechts AND = * OR = + NOT = 1 - X

© Luc De Raedt

A recipe for NeSy

Where do the numbers come from ?
From logic formulae to circuits

£(AAB) - O) 2(Q)

The query Q determines
C the structure

A recipe for NeSy

Where do the numbers come from ?

From logic formulae to circuits
C(AAB) > C) £(Q)

What is the algebraic structure ? = Parametric circuit

?
What operators ? The query Q determines

the structure (potentially
after knowledge

f(C) compilation)

What labeling
functions ? Z(A) Z(B)

A reciﬁe for NeSx

Boolean

2 (ANB c b [4 [pAq p [a [p=a
AB) — T|IT| T T|T| T
F(()) T|F| F T | F| F
F|T| F F|lT| T
F|F| F F|F| T

What rators ?
at operators The query Q determines
the structure (potentially
after knowledge
compilation)
What labeling
functions ?

A recipe for NeSy
Where do the numbers come from 2

Probability

E
1-p@) -
r—‘—\

PA) -

r—‘—\

o
V—‘—\
p(B) »(C)

Knowledge Compilation (computationally expensive)

Probabilistic structure is explicit in compiled formula.

A recipe for NeSy
Where do the numbers come from 2

P(AV B) = P(A) + P(B) - P(A A B)

L]]]

B i i

>

o B
V—‘—\ V—‘—\
-A B 1-p(A) p(B)

_/

Knowledge Compilation (computationally expensive)

Probabilistic structure is explicit in compiled formula.

A recipe for NeSy
Where do the numbers come from 2

Fuzzy

* t-norm extends conjunction to [0,1] interval oher operators derived from the t-norm
* Three fundamental t-norms:

L. Product tukasiewicz Godel
* Lukasiewicz t-norm: XAy Xy max(0,x +y — 1) | min(x, y)
1(x,y) = max(0.x +y — 1) vy [atyoxy | minlaty | maxey
. _ : X 1-x 1-x 1-x
+ Goedel t-norm: #5(x, y) = min(x, y) TS0 e, I 5

+ Product t-norm: tp(x,y) = x - y

continuous and

What operators ? differentiable

but a measure of

What labeling vagueness
functions ? not of uncertainty

Many problems
See [Van Krieken et al AlJ]

Logic as soft constraints
Markov Logic

Propositional logic Model / Possible World

10: calls(mary) <- hears_alarm(mary) A alarm
{burglary,
20: calls(john) <- hears_alarm(john) A alarm hears_alarm(john),
alarm,
30: alarm <- earthquake v burglary calls(john)}

probability of world — e”10 x e”*20 x e”*30

using weighted model counting (WMC)
weights/probabilities are on the formulae (soft constraints)
the higher the weight , the harder or more logical the constraint
w(fl) =er10 w(not f1) =er0 =1
w(f2) = er20 w(not f2) =e”0 = 1
w(f3) = e”30 w(not f3) =er0 = 1
(need to normalise to get probability distribution)

Logic as soft constraints
Probabilistic Soft Logic [Bach & Getoor]

Propositional logic Model / Possible World

10 : calls(mary) <- hears_alarm(mary) A alarm {0.7 burglary,

0.8 hears_alarm(john),
20: calls(john) <- hears_alarm(john) A alarm 0.5 alarm,
0.3 calls(john)}

atoms are no longer true or false in worlds

logic : a constraint is satisfied (1) or not (0) by 2%3?\‘8 orfalse to a certain degree

30: alarm <- earthquake v burglary

fuzzy logic : the distance to satisfaction Lukasiewicz T-norm
the higher the distance, the less likely the world For 0 and 1 we get boolean logic
calls(john) <- hears_alarm(john) A alarm AVEB =min(1.A+B)

AANB=min(1LA+B—-1)
A < B =min(1,1 + A — B) (residuum)

>0.5 0.7 0.8

AAB=min(1,1.5-1)=0.5 evaluates to 1 when rule is satisfied

Rule evaluates to min(1,1 — 0.5+ 0.3) = 0.8 when calls(john) =0.3 when B < A

) BNEEGN - —ox 0o

See Van Krieken et al AlJ 22

From StarAl to NeSy

—L

o

Z:(C)
. StarAl ZoN | D
A ZuB) gL
—L1

£4B) 4(C)

& REPARAMETERIZATION &

—L

o

—L
L
. 2.8 m NeSy e [

!

7:A)
m m — mfpw) 4C)
- -

Part 3: DeepStochLog and

DeepProblLog

Two types of
probabilistic models / programs

* Based on a random graph model
¢ Bayesian Nets and ProbLog -> DeepProbLog [AlJ 21]
¢ Based on a random walk model

* Probabilistic grammars and Stochastic Logic Programs
[Muggleton] -> DeepStochLog [AAAI 22]

Our method/recipe:
Take an existing probabilistic logic and
inject neural predicates that act ako interface

DeepProblog

DeepProblLog = Probability + Logic + Neural Network
DeepProblLog = ProbLog + Neural Network

Related work in NeSy DeepProbLog

Logic is made less expressive

Full expressivity is retained

Logic is pushed into the neural network Maintain both logic and neural networl

Fuzzy logic Probabilistic logic programming

Language semantics unclear

Clear semantics

Holds also for DeepStochLog

DeepStochLog = SLPs + Neural Network

46

PART 3 A

From Prolog to
ProblLog

QBABI

Propositional logic program

burglary.
hears_alarm(mary).

Logic Programs

as in the programming language Prolog

Two proofs (by refutation)

:- calls(mary).

:- alarm, hears_alarm(mary).

earthquake.

hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

:- earthquake, hears_alarm(ma
l :- burglary, hears_alarm(|

- hears_alarm(mary). *
l :- hears_alarm(mary)

0 l

calls(mary) :— alarm, hears_alarm(mary). [

calls(john) :— alarm, hears_alarm(john).

A proof-theoretic view

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 = burglary.

0.3 :thears_alarm(mary).
Probabilistic facts

0.05 :earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

4)

Key Idea (Sato & Poole)
the distribution semantics:

unify the basic concepts in logic
and probability:

random variable ~ propositional
variable

an interface between logic and
probability

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program Two proofs (by refutation)

0.1 ::burglary. - alarm
0.3 ::hears_alarm(mary). / \
0.05 ::earthquake. - burglary. - earthquake.
0.6 ::hears_alarm(john).
P=0.1 l P=0.051
alarm :— earthquake. i i

alarm :— burglary.
Probability of one proof : H Pf
calls(mary) :— alarm, hears_alarm(mary). JfacieProof

calls(john) :— alarm, hears_alarm(john).

Probabilistic Logic Programs

as in the probabilistic programming language ProbLog

Propositional logic program

0.1 ::burglary.
0.3 :hears_alarm(mary).

0.05 :earthquake.
0.6 ::hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.

calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

Disjoint sum problem

- alarm
- burglary. :- earthquake.
P=0.1 l P=0.05l

0

]
Probability of one proof : H Pf
[fifacteProof

P(alarm) = P(burg OR earth)
= P(burg) + P(earth) - P(burg AND earth)
=/= P(burg) + P(earth)

Probabilistic Logic Program
Semantics

earthquake. [Vennekens et al, ICLP 04]

0.05: :burglary. T
probabilistic causal laws

0.6::alarm :- earthquake.

0.8::alarm :- burglary.
grary earthquake ||.0

alarm no alarm

6 0.4
no burglary burglary

burglary

05 0.95\, no burglary

no alarm

alarm no alarm alarm

P(alarm)=0.6x0.05%0.8+0.6%0.05%0.2+0.6%0.95+0.4x0.05%0.8

52

Probabilistic Logic Program
Semantics

Propositional logic program

Bayesian Network

0.1 ::burglary.
0.05 :: earthquake.

alarm :— earthquake.

alarm :— burglary.

0.7::calls(mary) :— alarm.

0.6::calls(john) :— alarm.

Bayesian net encoded as Probabilistic Logic Program
PLPs correspond to directed graphical models

oy
'@ ProbLog has both (directed) probabilistic graphic models,
the programming language Prolog (and probabilistic databases) as special case

Flexible and Compact Relational
Mo e! for Predicting Grades

e
“Program” Abstraction:
e S, C logical variable representing students, courses

¢ the set of individuals of a type is called a population
e Int(S), Grade(S, C), D(C) are parametrized random variables

Grounding:
+ for every student s, there is a random variable Int(s)
» for every course c, there is a random variable Di(c)
for every s, c pair there is a random variable Grade(s,c)
BﬁB* all instances share the same structure and parameters

ersting, Natarajan, Poole: Statistical Relational Al

Shows relational structure C
grounded model: replace variables by constants T - T
T 0.9 M Obselved Value: A)< Tosol!
Works for any number of students / classes (for 1000 F oo i) . AF osopm:)
students and 100 classes, you get 101100 random e ™ < Lo Z e f
(diffc2)

variables); still only few parameters \F 0.04 I

T o7smm

. - ariste) Na—
. /imss)) | Observed Value: B F o2l)
With SRL / PP [Tossmm | Ny) —
F o3l P / diff(c3)
L ’ <‘T 0221

otsoE B 8)
build and learn compact models, AN\)/ (¥ o7s

(_int(sa))

74

Y —
(_diffca)
Tosoll:
A F o050l
\ [Ty

T " gr(s3.c2) \
from one set of individuals - > other sets; ObsePued Value: 8 p
reason also about exchangeability,

build even more complex models,

porate background knowledge

#rsting, Natarajan, Poole: Statistical RelatiorSd AI

ProblLog applications

Travian: A massively multiplayer
real-time strategy game

Can we build a model
of this world ?
Can we use it for playing
better ?

o [Thon et al,MLJ 11]

Activity analysis
and tracking

Track people or objects over = !FE !
o)) ‘
time? Even if temporarily K-} i E;Pqpn

hidden?

- o e

AAddk
e

[Persson et al, IEEE Trans on
Cogn. & Dev. Sys. 19;
ML) 16] IJCAI 20]

Recognize activities?

Infer object properties?

[Skarlatidis et al, TPLP 14;
Nitti et al, IROS 13, ICRA 14,

58

Learning relational affordances

But focus on learning probabilistic aspects, neural networks still pipelined

displYos. | dispXgse..

d'splYnMam

e
dISPIXOMaIn

—

similar to probabilistic Strips
(with continuous distributions)

Learning relational
affordances
between

two objects
(learnt by experience)

Moldovan et al. ICRA |2, 13, 14;Auton. Robots 18

mo B -~ o

Biology

Probabilistic Sub-network
network generation inference

Interaction network

143
= ST
—37 sl e
2 2
2 W
~ ", ¥ Inferred
La}/ _ sub-network

Molecular profiling Gene list

Figure 1. Overview of PheNetic, a web service for network-based interpretation of ‘omics’ data. The web service uses as input a genome wide interaction
network for the organism of interest, a user generated molecular profiling data set and a gene]m derived from these data. Interaction networks for a wide
variety of organisms are readily available from the web server. Using the upl s data the i ion network is converted into
a probabilistic network: edges receive a probability proportional to the levels measured for the terminal nodes in the molecular profiling data set. This
probabilistic interaction network is used to infer the sub-network that best links the genes from the gene list. The inferred sub-network provides a trade-off
between linking as many genes as possible from the gene list and selecting the least number of edges.

« Interaction network:
* 3063 nodes

» Causes: Mutations

e . .
« All related to similar Goal: connect causes to effects

through common subnetwork

phenotype * Genes - ’
* Effects: Differentially expressed Proteins . Tec:rl‘?duzse.chanlsm
genes * 16794 edges ques:

* DTProbLog

* Molecular interactions . .
* Approximate inference

« Uncertain

* 27 000 cause effect pairs

60

et al., Molecular Biosystems |3, NAR 15] [Gross et al. Communications Biology, 19]

& € [hitpsi/dtai.cs.kuleuven.be/problog/

PART 3 B

Introduction. g
Probabilistic logic programs are logic programs in which some of the facts are annotated with probabilities. D P b I
ProbLog is a tool that allows you to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components bt e e p ro O g

uncertainties that are present in real-life situations.

The engine tackles several tasks such as computing the marginals given evidence and learing from (partial) interpretations. ProbLog is a suite of efficient algorithms
tasks. It is based on a conversion of the program and the queries and evidence to a weighted Boolean formula. This allows us to reduce the inference tasks to well-s
weighted model counting, which can be solved using state-of-the-art methods known from the graphical model and knowledge compilation literature.

The Language. Probabilistic Logic Programming.

ProbLog makes it easy to express complex, probabilistic models.
PROBABI
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
BABI
smokes(X) :- stress(X). FROM q Y To
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).

BABI
Y

6l

Neural predicate .
P The neural predicate

Neural

The output of the neural network is probabilistic facts in
DeepProblLog

® Neural networks have uncertainty

in their predictions Example:
e \
® A normalized output can be Key Idea DeepProbLog ..
. - :: digit(X,Y).
interpreted as a probability

distribution unify the basic concepts in logid
and neural networks: Instantiated into a (neural) Annotated Disjunction:

® Neural predicate models the)
neural predicate ~ neural net

output as probabilistic facts 0.04::digit (H,0) ; 0.35::digit(H,1) ; ... ;

i
\ No ch ded in th an interface between logic and 0.53::digit(H,7) ; ... ; 0.014::digit(H,9).
oc a.n'ge.s needed in the neural nets PROBABI
probabilistic host language \. J %

63

DeepProblLog exemplified:
MNIST addition

Task: Classify pairs of MNIST digits with their sum

ElEs
EE s
Kl E 11

Benefit of DeepProbLog:
¢ Encode addition in logic

¢ Separate addition from digit classification

nn(mnist_net, [X], Y, [0 ... 9]) =:: (X,Y).
addition(X,Y,2) :- (X,N1), (Y,N2), 2% is NI1+N2.
Examples:

addition(EH,H ,8), addition(d M ,4), addition(@ BA.,11), ..

DeepProbLog exemplified:
MNIST addition

Task: Classify pairs of MNIST digits with their sum

El s
EE
Kl E 11

Benefit of DeepProbLog:
¢ Encode addition in logic

¢ Separate addition from digit classification

nn(mnist_net, [X], Y, [0 ... 9]) =:: (X,Y).
addition(X,Y,%) :- (X,N1), (Y,N2), Z is NI1+N2.
addition(E], B,8) :- digit(E}N1), digit(B,N2), 8 is N1 + N2.
Examples:

addition(,.,S), addition(m m o4 addition(,,11),

MNIST Addition

Pairs of MNIST images, labeled with sum

Baseline: CNN

® (Classifies concatenation of both images ~ DeepProblag
into classes 0 ...18

DeepProblLog: 15

® CNN that classifies images into 0 ... 9

® Two lines of DeepProblog code 00

Iterations

® Result:

67

Loss Accuracy
1.0

0.0
0 5000 10000 15000 20000 25000 30000

Example

Learn to classify the sum of pairs of MNIST digits
Individual digits are not labeled!

Eg (H. B9

Could be done by a CNN: classify the
concatenation of both images into |19 classes

However: ElHEIEIA-BEBR-="

PROBABI

68

Multi-digit MNIST
addition with MNIST

number ([], Result , Result) .

number ([HIT], Acc, Result) :—
digit(H, Nr), Acc2 is Nr +10*Acc ,
number (T, Acc2 ,Result) .

number (X,Y) :— number (X,0.Y) .

multiaddition(X, Y, Z) :—
number (X, X2),
number (Y,Y2),
Zis X2+Y2 .

PROBABI

&

69

Accuracy

1.0

Degpproblog | o

0.6

0.4

0.2

0.0
0 5000 10000 15000 20000 25000 30000
Iterations

(b) Multi-digit (T2)

PROBABI

Noisy Addition

nn(classifier, [X], Y, [0 .. 9]) :: digit(X,Y).
t£(0.2) :: noisy.
1/19 :: uniform(X,Y,0) ; ... ; 1/19 :: uniform(X,Y,18).

addition(X,Y,Z) :- noisy, uniform(X,Y,Z).
addition(X,Y,Z) :- \+noisy, digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

Fraction of noise

0.0 0.2 0.4 0.6 0.8 1.0
Baseline 93.46 87.85 8249 52.67 879 587
DeepProbLog 97.20 95.78 94.50 9290 46.42 0.88
DeepProbLog w/ explicit noise 96.64 95.96 95.58 94.12 73.22 2.92
Learned fraction of noise 0.000 0.212 0.415 0.618 0.803 0.985

Table 3: The accuracy on the test set for T4.

ProbLog Inference

Answering a query in a ProbLog program happens in four steps

Inference & Learning

PROBABI

1. Grounding the program w.r.t. the query

Rewrite the ground logic program into a propositional logic formula

2
3. Compile the formula into an arithmetic circuit
4. Evaluate the arithmetic circuit

0.1 :: burglary. Query

0.5 :: hears_alarm(mary).

P(calls(mary))

0.2 :: earthquake.
0.4 :: hears_alarm(john).

alarm :— earthquake.

alarm :— burglary.
calls(X) :— alarm, hears_alarm(X).

ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1. Grounding the program w.r.t. the query (only relevant part !)

2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit

4. Evaluate the arithmetic circuit

0.1 :: burglary.

0.5 :: hears_alarm(mary). Query

0.2 :: earthquake. P(calls(mary))
0.4 :: hears_alarm(john).
alarm :— earthquake.

alarm :— burglary.
calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

ProbLog Inference

Answering a query in a ProbLog program happens in four steps

1. Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit

4. Evaluate the arithmetic circuit

0.1 :: burglary.
0.5 :: hears_alarm(mary).
calls(mary)
0.2 :: earthquake.
0.4 :: hears_alarm(john). e
alarm :— earthquake. hears_alarm(mary) A (burglary v earthquake)

alarm :— burglary.
calls(mary) :— alarm, hears_alarm(mary).

calls(john) :— alarm, hears_alarm(john).

ProbLog Inference

Answering a query in a ProbLog program happens in four steps
1. Grounding the program w.r.t. the query

2. Rewrite the ground logic program into a propositional logic formula
3. Compile the formula into an arithmetic circuit (knowledge compilation)
4. Evaluate the arithmetic circuit

calls(mary)

o

hears_alarm(mary) A (burglary v earthquake)

Useful Semirings

[task I A | ¢ I e 2 a(v) [a(e) [vef
B, BT,
SAT {true, false} | false true v A true true G, GK,
K, L, M
B, G,
#SAT N 0 1 + . 1 1 GK, K,
L
WMC R>o 0 1 + . € Rxo €R>g
PROB Rso 0 1 + . €[0.1] 1—a(v)
SENS R)Y] 0 1 ¥ : vor €0,1 | 1-a(v)
GRAD R>o x R (0,0 (1,0) | Eq. (4) | Eq. () | Eq. (2) Eq. (3)
MPE R>o 0 1 max . € [0,1] 1—av)
S-PATH N 00 0 min + eN 0
W-PATH N> 0 0 max min eN 20
FUZZY [0.1] 0 1 max min e [0,1] 1
EWEIGHT {0,..., k} k 0 min = € {0,..., k} | €40,..., k}
0BDD 0BDD (V) | OBDD-(0) | OBDD. (1) v A OBDD (v) \0BDD - (1)
WHY POV) 0 0 U U {v} /a
RA* N[V 0 1 + . v n/a

Ixamples of commutative semirings and labeling functions. The WHY and RA* provenance semirings apply to
positive literals only. Reference key: B (Bacchus et al., 2009), BT (Baras and Theodorakopoulos, 2010), E (Eisner, 2002), G
(Goodman, 1999), GK (Green et al., 2007), K (Kimmig et al., 2011), L (Larrosa et al., 2010), M (Meseguer et al., 2006); more

examples can be found in these references. From Kimmig,Vanden Broeck and De Raedt, 2016

Gradient Semiring

n(mnist_net, [X], Y, [0 ... 9]) =::
(X,Y).

addition(X,Y,2) :-

(X,N1), .
(Y,N2), [JDOQGWCE
7 is N1+N2.
uLueasluu,k”M
The ACs are differentiable
and there is an interface si9ic@0) | [axgn(mn sigicm.) | [mgmn o]
with the neural nets o0 000 (o.8.6.1 00 e
! \
|
(Pretty elegant in ProbLog \HH#HH H\H#HH
we use the “gradient” semi-ring) F F
PROBABI
‘ 1t 1t

N/ 0) n

Program Induction/Sketching

In Neural Symbolic methods
® Rule Induction — work with templates
P(X) - R(XY), Q(Y)
® and have the “predicate” variables / slots PQ, R determined by the NN
® Simpler form, fill just a few slots / holes
Approach similar to ‘Programming with a Differentiable Forth Interpreter 11 04
® Partially defined Forth program with slots / holes

® Slots are filled by neural network (encoder / decoder)

)
PROBABI

Fully differentiable interpreter: NNs are trained with input / output
examples

im Rocktaschel, Jason Naradowsky, Sebastian Riedel: Programming with a Differentiable Forth Interpreter.

78

Example DeepProbLog

neural predicate

hole(X,Y,X,Y):-
(X,Y,0) Sorting: Training length Addition: training length
! Test Length 2 3 4 5 6 8
; 8 [1000 1000 4922 - - 1000 1000 _ 100.0
hole(X,Y,Y,X):- é $nje 2
ole(X, x Y)1) 04 [Bosnjak etal., 2017) 64 | 1000 1000 2065 - ~ | 1000 1000 1000
’ DeenProbL 8 | 1000 1000 1000 100.0 100.0 | 1000 1000 100.0
ceprrobLog 64 | 1000 1000 1000 1000 1000 | 100.0 1000 100.0
| r . s .-
bubble sort (a) Accuracy on the sorting and addition problems (results for 94 reported by Bo$njak et al. [2017]).
bubble([X],[],X).
bubble([H1,H2IT],[X11T1],X):- Training length — | 2 3 4 5 6
hole(H1,H2,X1,X2), 94 on GPU 42s 160s = - -
bubble([X2IT],T1,X) 94 on CPU 6ls 390s - - -
DeepProbLog on CPU Is 14s 32s 1l4s 245s

bubblesort([],L,L). (b) Time until 100% accurate on test length 8 for the sorting problem.

bubblesort(L,L3,Sorted) :- Table 1: Results on the Differentiable Forth experiments
bubble(L,L2,X),
bubblesort(L2,[XIL3],Sorted).

sort(L,L2) :- bubblesort(L,[],L2).

DeepSeaProblLog

dim is neural net returning parameters of normal distribution.

length (Obj) ~ normal (dim(Obj, Image)) .

large (Obj) :- length(Obj) > 100.

218 6 2 | 8 6 determining order digits
to determine year

DeepSeaProblLog

So far from input ﬂ. to output 11 so that SUM(ﬂ. ,11) holds

In DeepSeaProblog, you can query SUM(. , X, 5)

recon_loss

i
-

recon_loss

Figure 4: Given example pairs of images and the value of their subtraction, e.g., (I,) and 3, the CVAE encoder
vae_latent first encodes each image into a multivariate normal NDF () and a latent vector. The latter is
the input of a categorical NDF dii i t, completing the CVAE latent space. Supervision is dual; generated images are
compared to the original ones in a probabilistic reconstruction loss, while both digits need to subtract to the given value.

LOG RAL

Neural Theorem Prover

Towards Neural Theorem Proving at Scale

Example Knowledge Base:
£(ABE, HOMER)

LOE (HOMER, BART).

atherOf(X,Y) -

HOMER BART

DOV PO oS

2

= F A visual depiction of the NTP® recursive computation graph construction, applied to a toy KB (top left). Dash-separated

o Minervini Bosnjak Rocktidschel Riedel

Soft Unification

® NTP :“grandpa” softly unifies with “grandfather”, as embeddings are close
® DeepProblog : define
softunification(X,Y) :- embed(X,EX), embed(Y,EY), rbf(EX,EY).

softunification(X,Y) returns | if X andY unify

—llex—eyl|
otherwise returns exp(iz)
2u?

grandPaOf(X,Y) :- softunification(grandPaOf,R), R(X,Y).

83

Probabilistic Logic Shield for Reinforcement Learning

Wen-chi Yang et al, IJCAI 23 Distinguished paper award

Shield

Assuming noisy - -
sensors \ H
0.8 :: obstc(front). Will stay undamaged?

0.2 :: obstc(left). Plsate|a.s) =
0.5 :: obstc(right). sateld,s)= ;Z;:lerate : 832
right ~08

0.5 :: act(accel);
0.3 : act(left);

0.2 act(right) Probability of staying

n(accelerate|s) = 0.5 T2
N ; safe if followin ?
I!(léfth) 0,32 0.9 :: crash:— obstc(front), act(accel). P (safe|s) =0 5976
(right|s)=0. 0.4 :: crash:— obstc(left), act(left). z A
0.4 :: crash:— obstc(right), act(right).

safe:— -crash.

What is a safer policy 7+?

nt(accelerate|s) = 0.24
DeepProbLog Theory 7 (Lett|s) = 048

(Manhaeve et al. AlJ)

t(right|s) = 0.28

DeepStochLog : Neural
Definite Clause
Grammars

PART 3 B

DeepStochLog : Neural
Definite Clause
Grammars

DeepStochLog

Little sibling of DeepProbLog [Winters, Marra, et al AAAI 22]
Based on a different semantics

® probabilistic graphical models vs grammars

® random graphs vs random walks

Underlying StarAl representation is Stochastic Logic Programs (Muggleton,
Cussens)

® close to Probabilistic Definite Clause Grammars, ako probabilistic unification based
grammar formalism

® again the idea of neural predicates

Scales better; is faster than DeepProblLog

87

CFG: Context-Free Grammar

-=> ’ ’
7 1 N
—=> [+ |
—_—> [" 0"] |
—_> [wim] 2 + 3 +
_> [" 9"]
- Is sequence an the specified language?

- What is the “part of speech™iag of a terminal

all elements of language

Always sums to 1 per non-

terminal

PCFG: Probabilistic Context-Free Grammar

0.5 :: E -=> E, P, N £ P N
Z ols N

E P N
1.0 :2 P —=> [“+"] 0.5 1 0.1

N 1 0.1
0.1 22 N —=> [“0"] 0.1]
0.1 22 N —=> [“1"] 2ot 8

Probability of this parse = 0.5°0.5°0.5*0.1*1°0.1*1*0.1
=0.000125

0.1 22 N —=> [“9"]
Useful for:
- What is the for this sequence of terminals? (setufor ambiguous grammars)
- What is the this string?

DCG: Definite Clause Grammar

e(N) --> n(N). e(t3)
e(N) --> e(N1l), p, n(N2), e(5) o n(8)
{N is N1 + N2}. s 1N
p ——> [“+7]. e(2) P n(3)
I
n(0) --> [“0"]. n(2)
n(l) --> [“1"]. |
2 + 3 + 8

n(9) --> [“9"].

Useful for:

- Modelling Ianguages (e.g. context-sensitive)

- Adding constraints between non-terminals thanks to POWer (e.g. through unification)
- aside from terminal sequence (through unification of input variables)

SDCG: Stochastic Definite Clause Grammar

0.5 :: e(N) —-> n(N). St
0.5 :: e(N) -—> e(N}), p, n(N2), e(5) p n(8)
{N is N1 + N2}. 7 b5\
1.0 :: p -=> ["+"]. Sl)
0.} 1 0.
0.1 :: n(0) —=> [“0"]. n(z2) 0-
0.1 :: n(l) —=> [“1"]. o.]
2 + 3 + 8

0.1 22 n(9) ==> ["9"]. Probability of this parse = 0.5*0.5*0.5*0.1*10.1*170.1

=0.000125
Useful for:
- as PCFGs give to CFG (e.g. most likely parse)
- But: possible due to failing derivations

NDCG: Neural Definite Clause Grammar

0.5 11 e(N) —=> n(N).
0.5 :: e(N) --> e(N1), p, n(N2),
{N is N1 + N2}. e(13)
1.0 :: p -=> ["+"].
nn(L[%1,0¥], [digit]):: e(3) p n(8)
7 ols N
n(y) —> [X].
L e(2) p n(3)
digit(v) :-
member (7, (0,1,2,3,4,5,6,7,8,91) - o4 :31) Prusser o8 =8)
n(2) 1 [rmer ol
P la -2)
. . &
Probability of this parse =
0.5*0.5*0.5*p, (m=2)"1p (B8=3)"1p (BA=8)
Useful for:

- processing: e.g. tensors as terminals
- Learning rule probabilities using

DeepStochlLog
Inference

Deriving probability of goal for given terminals in NDCG

Proof derivations d(e(1),[o4/]) then turn it into and/or tree

e(1)
e(E1), [+], n(E2), {1 is E1+E2}
n(E1), [+], n(E2), {1 is E1+E2}

[E+], n(E2), {1 is @+E2} [E+], n(E2), {1 is 1+E2}
A+, {1 is 0+1} EA+H@. {1 is 1+0}
108 /1 10K /|l

And/Or tree + semiring for different inference types

Probability of goal Most likely derivation

Pg(derives(e(1), [, +, /) = 0.1141 dnax(e(1),[8, +,) = argmaxye - g, +, 1Po(d(e(1)) = [0,+,1]

®5
-5 {% o
o, (= 0) A0 RO 1 p (@
(123

: Axo !I)Tt%_!— 05
(=

=1 P (d=0)
.98 .02

Inference optimisation

Inference is optimized using

SLG resolution: Prolog tables the returned proof tree(s), and thus creates
forest

— Allows for reusing probability calculation results from intermediate
nodes

Table 6: Q4 Parsing time in seconds (T2). Com-
parison of the DeepStochLog with and without
tabling (SLD vs SLG resolution).

Lengths +# Answers No Tabling Tabling

1 10 0.067 0.060
3 95 0.081 0.096
5
7

1066 3.78 0.95
10386 30.42 10.95
9 68298 1494.23 132.26

11 416517 timeout 1996.09

Batched network calls: Evaluate all the required neural network queries
first
— Very natural for neural networks to evaluate multiple instances at once
using batching
& less overhead in logic & neural network communication

Mathematical expression outcome

T1: Summing MNIST numbers
with pre-specified # digits

+ =137

T2: Expressions with images
representing operator or single
digit number.

v) X3 =0

Table 1: The test accuracy (%) on the MNIST addition (T1).

Number of digits per number (N)

Methods 1 2 3 4
NeurASP 97.34£03 93.94+0.7 timeout timeout
DeepProbLog 97.2+0.5 952+ 1.7 timeout timeout,
DeepStochLog 97.94+0.1 96.4£0.1 945+1.1 927406

Table 2: The accuracy (%) on the HWF dataset (T2).

Expression length

Method 1 3 5 7
NGS 90.2+1.6 85.7+£1.0 91.7+1.3 204+£37.2
DeepProbLog 90.8+1.3 85.6+1.1 timeout timeout

DeepStochLog 90.84+£1.0 86.3£1.9 9214+1.4 948+£0.9

Classic grammars, but with MNIST images as terminals

T3: Well-formed brackets as input

(without parse). Task: predict parse.

o] /1o]ol o]]/]

= parse=() (()())

T4: inputs are strings akblcm (or
permutations of [a,b,c], and
(k+1+m) mod 3=0). Predict 1 if
k=I=m, otherwise 0.

naeeRERE -
/] L{o]o]0] 2

Table 3: The parse accuracy (%) on the well-formed parentheses dataset (T3).

Maximum expression length
Method 10 14 18

DeepProbLog 100.04+0.0 99.4+0.5 99.2£0.8
DeepStochLog 100.0 £ 0.0 100.0=0.0 100.0 £0.0

Table 4: The accuracy (%) on the a"b"c¢" dataset (T4).

Expression length
Method 3-12 3-15 3-18
DeepProbLog 99.8+0.3 timeout timeout
DeepStochLog 99.4 +£0.5 99.2+0.4 98.8+0.2

Citation networks

T5: Given scientific paper set with only few labels & citation

network, find all labels

Table 5: Q3 Accuracy (%) of the classifica-
tion on the test nodes on task T5

Method Citeseer Cora
ManiReg 60.1 59.5
SemiEmb 59.6 59.0
LpP 45.3 68.0
DeepWalk 43.2 67.2
ICA 69.1 75.1
GCN 70.3 8L.5
DeepProbLog timeout timeout
DeepStochLog 65.0 69.4

Challenges

e For NeSy,

e scaling up

¢ which models and which knowledge to use

* large scale life applications

e peculiarities of neural nets & fuzzy logic

e dynamics / continuous

¢ This is an excellent area for starting researchers / PhDs

Neurosymbolic =
Neuro_x Logic + Probability

PROBABILITY

NEURAL

see Manhaeve et al. NeSy Book

interpret PROBABILITY broadly (including fuzzy)

StarAl and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20; Marra et al, arxiv]

Provide recipe for

Kautz

“an interface layer (<> pipeline) between neural &
symbolic components”

THANKS

