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Introduction & Motivation

1

Open KG
online with content freely accessible

BabelNet
DBpedia
Freebase
Wikidata
YAGO
....

Enterprise KG
for commercial usage

Google
Amazon
Facebook
LinkedIn
Microsoft
....

1picture from https://www.csee.umbc.edu/courses/graduate/691/fall19/07/
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Introduction & Motivation

Applications
e-Commerce
Semantic Search
Fact Checking
Personalization
Recommendation
Medical decision support
system
Question Answering
Machine Translation
...

Research Fields

Information Extraction

Natural Language Processing

Machine Learnig (ML)

Knowledge Representation

Web

Robotics

...
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Introduction & Motivation

Knowledge Graph: Definition [Hogan et al., 2021]

A graph of data intended to convey knowledge of the real world

conforming to a graph-based data model

nodes represent entities of interest

edges represent different relations between these entities

data graph potentially enhanced with schema

KGs: Main Features

ontologies employed to define and reason about the semantics of nodes and edges

RDF, RDFS, OWL representation languages largely adopted

grounded on the Open World Assumption (OWA)

very large data collections

suffer of incompleteness and noise

since often result from a complex building process
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Machine Learning
&

Knowledge Graphs



Machine Learning and Knowledge Graphs

ML and KGs

Two perspectives:

KG as input to ML
Goal: improving the performance in
many learning tasks, e.g.

Question Answering (QA)
image classification
instance disambiguation
text summarization
....

ML as input to KG
Goal: improving the KG itself

creating new facts
creating generalizations
prototyping
improving the size, coverage,
depth and accuracy of KGs →
reducing their production costs
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Machine Learning and Knowledge Graphs

Reason Why Semantics is Needed

Numeric-based methods
highly scalable
consist of series of numbers without any obvious human interpretation

no interpretable models provided
impact on interpretability, explainability, trustworthiness of results

no background knowledge and reasoning capabilities generally exploited
only factual information is considered

⇓
knowledge within KG

only partially considered

and not always in a fully
correct way (negatives)

2

3

2Picture from D. N. Nicholson et al. Constructing knowledge graphs and their biomedical applications,
Computational and Structural Biotechnology Journal, Vol. 18, pp. 1414–1428, (2020) ISSN 2001-0370

3Picture from https://github.com/topics/knowledge-graph-embeddings
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KG as input to ML
(Infusing KG into Large Language Models)



KG as input to ML

Large Language Models (LLMs)

LLM: a type AI algorithm that

uses deep learning techniques and

massively large data sets
to understand, summarize, generate and predict new content

specifically architected to help generate text-based content

typically has one billion or more parameters

is able to understand and generate accurate responses rapidly

Modern LLMs

use transformer neural networks (transformers)

LLMs take a complex approach that involves multiple components
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KG as input to ML

Main Usages of Large Language Models

Once an LLM is trained, a base exists on which performing

 

Text generation 
Translation (LLMs 

trained on multiple 
languages) 

Content 
categorization, 

Content summary 
and Rewriting

Conversational AI 
and chatbots (e.g. 

ChatGTP)
Sentiment analysis 

C. d’Amato (UniBa) Semantics, ML & KGs KR 2023 10 / 52



KG as input to ML

LLM: Challenges and Limitations

Development costs
running LLMs require large quantities of expensive graphics processing
unit hardware and massive data sets

Operational costs → can be very high for the hosting organization
Bias (since trained on unlabeled data)

no guarantee that known bias is removed

Explainability → almost missing
Hallucination

when providing an inaccurate response not based on trained data
Complexity

can be particularly complex to troubleshoot
Glitch tokens

maliciously designed prompts that cause an LLM to malfunction
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KG as input to ML

Infusing KG into LLMs
Infusing factual triples of KG into a LLM [Moiseev et al., 2022]

Goal: assess whether LLMs can better internalize knowledge from structured data (KG)
or from text on QA tasks

Result: models pre-trained on KG outperform the baseline pre-trained on text sentences
containing the same knowledge

Open Challenges

What would be the impact of additionally exploiting KG semantics (e.g. concept
hierarchy) and reasoning capabilities (generating also additional fact triples)?

additionally exploiting KG semantics (e.g. concept hierarchy)

and reasoning capabilities (generating also additional fact triples)?

⇓
experimental study required

a new solution for incorporating semantics would be needed
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ML as input to KG

(KG Refinement by KG Embedding Methods)

(KG Refinement by Symbol-based Learning Methods)



KG Refinement by KG Embedding Methods:

Injecting Semantics



ML as input to KG KG Refinement by KGE

Incompleteness and noise

⇓
Knowledge Graph Refinement

Link Prediction: predicts missing
links between entities

regarded as a learning to
rank problem

Triple Classification: assesses
correctness of a statement wrt a KG

regarded as a binary
classification problem

Very Large Data Collections

⇓
New scalable Machine Learning methods

grounded on numeric-based
approaches

KG vector embedding models
(KGE) largely
investigated [Cai et al., 2018]

ML/KGE for KGs: Issues

CWA (or LCWA) mostly adopted vs. OWA

schema level information and reasoning capabilities almost disregarded

no interpretable models ⇒ hard to motivate results
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ML as input to KG KG Refinement by KGE

KG Embedding Models...

KGE models convert data graph into an optimal low-dimensional space [Cai

et al., 2018]

4

Graph structural information and properties preserved as much as possible

4Picture from https://laptrinhx.com/node2vec-graph-embedding-method-2620064815/
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ML as input to KG KG Refinement by KGE

...KG Embedding Models...

KGE methods differ in their main building blocks [Ji et al., 2020]:

 

Representation 
Space

where represeting 
relations and 

entities 

point-wise, complex, 
discrete, Gaussian, 

manifold, etc. 

Encoding Model 

for representing and 
learning relational 

interactions

linear, factorization, 
neural models, etc. 

Scoring Function

for measuring the 
plausibility of factual 

triples

based on distance, 
energy, semantic 
matching, other 

criteria

Auxiliary 
Information 

to be incorporated 
into the embedding 

methods 

text, type, images
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ML as input to KG KG Refinement by KGE

...KG Embedding Models

Goal

Learning embeddings s.t.

score of a valid (positive) triple
is higher than

the score of an invalid
(negative) triple 5

Negative examples generated by random corruption of triples
false negatives may be generated

only triple directly observable are considered

5Picture from "ECAI-20 Tutorial: Knowledge Graph Embeddings: From Theory to Practice"
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ML as input to KG KG Refinement by KGE

Idea: Enhance KGE through Background Knowledge (BK) Injection

[d’Amato et al., 2021c,b]

By two components:
Reasoning: used for generating negative

triples
Axioms: domain, range, disjointWith,

functionalProperty;

BK Injection: defines constraints on
functions, corresponding to
the considered axioms,
guiding the way embedding
are learned

Axioms: equivClass, equivProperty,
inverseOf and subClassOf.
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ML as input to KG KG Refinement by KGE

Other KG Embedding Methods Leveraging BK

Jointly embedding KGs and logical rules [Guo et al., 2016]

triples represented as atomic formulae
rules represented as complex formulae modeled by t-norm fuzzy logics

Adversarial training exploiting Datalog clauses encoding assumptions
to regularize neural link predictors [Minervini et al., 2017a]

A specific form of BK required, not directly applicable to KGs

C. d’Amato (UniBa) Semantics, ML & KGs KR 2023 20 / 52



ML as input to KG KG Refinement by KGE

An approach to learn embeddings exploiting BK [d’Amato et al., 2021c,b]

[Bordes et al., 2013] [Lin et al., 2015]

Could be applied to more complex KG embedding methods
with additional formalization
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ML as input to KG KG Refinement by KGE

TransOWL
[d’Amato et al., 2021c]

Derive further triples to be considered for training via schema axioms
equivClass, equivProperty, inverseOf and subClassOf

More complex loss function
adding a number of terms consistently with the constraints

L =

TransE loss function︷ ︸︸ ︷∑
⟨h,r,t⟩∈∆

⟨h′,r,t′⟩∈∆′

[γ + fr (h, t)− fr (h
′, t′)]+ +

∑
⟨t,q,h⟩∈∆inverseOf

⟨t′,q,h′⟩∈∆′
inverseOf

[γ + fq(t, h)− fq(t
′, h′)]+

+
∑

⟨h,s,t⟩∈∆equivProperty
⟨h′,s,t′⟩∈∆′

equivProperty

[γ + fs(h, t)− fs(h
′, t′)]+ +

∑
⟨h,typeOf,l⟩∈∆∪∈∆equivClass
⟨h′,typeOf,l′⟩∈∆′∪∆′

equivClass

[γ + ftypeOf(h, l)− ftypeOf(h
′, l ′)]+

+
∑

⟨h,subClassOf,p⟩∈∆subClass
⟨h′,subClassOf,p′⟩∈∆′

subClass

[(γ − β) + f (h, p)− f (h′, p′)]+

where q ≡ r−, s ≡ r (properties), l ≡ t and t ⊑ p (classes) and f (h, p) = ∥eh − ep∥
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ML as input to KG KG Refinement by KGE

TransROWL
[d’Amato et al., 2021b]

TransOWL loss function adopted plus weighting parameters
equivClass, equivProperty, inverseOf and subClassOf

TransR score function adopted

L =
∑

⟨h,r,t⟩∈∆

⟨h′,r,t′⟩∈∆′

[γ + f ′r (h, t)− f ′r (h
′, t′)]+ + λ1

∑
⟨t,q,h⟩∈∆inverseOf

⟨t′,q,h′⟩∈∆inverseOf′

[γ + f ′q (t, h)− f ′q (t
′, h′)]+

+λ2
∑

⟨h,s,t⟩∈∆equivProperty
⟨h′,s,t′⟩∈∆equivProperty′

[γ + f ′s (h, t)− f ′s (h
′, t′)]+ + λ3

∑
⟨h,typeOf,l⟩∈∆∪∆equivClass

⟨h′,typeOf,l′⟩∈∆′∪∆′
equivClass

[γ + f ′typeOf(h, l)− f ′typeOf(h
′, l ′)]+

+λ4
∑

⟨t,subClassOf,p⟩∈∆subClass
⟨t′,subClassOf,p′⟩∈∆subClass′

[(γ − β) + f ′(t, p)− f ′(t′, p′)]+

where
q ≡ r−, s ≡ r (properties), l ≡ t and t ⊑ p (classes)
the parameters λi , i ∈ {1, . . . , 4}, weigh the influence that each function term has during
the learning phase

C. d’Amato (UniBa) Semantics, ML & KGs KR 2023 23 / 52



ML as input to KG KG Refinement by KGE

An Alternative Approach: TransROWLR

[d’Amato et al., 2021c]

Adopting an axiom-based regularization of the loss function
as for TransER [Minervini et al., 2017b]

by adding specific constraints to the loss function rather than
explicitly derive additional triples during training

Loss function

L =
∑

⟨h,r,t⟩∈∆
⟨h′,r′,t′⟩∈∆′

[γ + f ′r (h, t) − f ′r (h
′
, t′)]+

+λ1
∑

r≡q−∈TinverseOf

∥r + q∥ + λ2
∑

r≡q−∈TinverseOf

∥Mr − Mq∥

+λ3
∑

r≡p∈TequivProp

∥r − p∥ + λ4
∑

r≡p∈TequivProp

∥Mr − Mp∥

+λ5
∑

e′≡e′′∈TequivClass

∥e′ − e′′∥ + λ6
∑

s′⊆s′′∈TsubClass

∥1 − β − (s′ − s′′)∥
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ML as input to KG KG Refinement by KGE

Lesson Learnt from Experiments...

Goal: Assessing the benefit of exploiting BK
Comparing6 TransOWL, TransROWL, TransROWLR over to the
original models TransE and TransR as a baseline

Perfomances tested on:
Link Prediction task
Triple Classification task
Standard metrics adopted

KGs adopted:
KG #Triples #Entities #Relationships

DBpedia15K 180000 12800 278
DBpedia100K 600000 100000 321
DBpediaYAGO 290000 88000 316

NELL7 150000 68000 272
6All methods implemented as publicly available systems https://github.com/Keehl-Mihael/TransROWL-HRS
7equivalentClass and equivalentProperty missing; limited number of typeOf-triples; abundance of

subClassOf-triples
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ML as input to KG KG Refinement by KGE

...Lesson Learnt from Experiments

Best performance achieved by TransROWL, in most of the cases, and
TransROWLR

TransROWL slightly superior performance of TransROWLR

NELL was aimed at testing in condition of larger incompleteness
equivalentClass and equivalentProperty missing
low number of typeOf-triples per entity
the models showed oscillating performances wrt the baselines

Open Challenges
further enhance semantic KGE models with additional schema axioms
extend the framework to more complex KGE models
improve semantic KGE models for coping with incompleteness →
further experiments needed
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Exploiting Semantics for Providing

Explanations to Link Predictions on KGs



ML as input to KG KG Refinement by KGE

A-Posteriori Explanations of Link Predictions...

A-posteriori methods find suitable explanation(s) based on the observed output
and the model input, independently on the KGE adopted

Given the predicted triple: ⟨NickMason, recordLabel, CapitolRecords⟩
why is it provided?

User is able to understand motivations, and trust (or not) the prediction

Example of exmplanation

⟨NickMason, associatedBand, PinkFloyd⟩,
⟨PinkFloyd, recordLabel, CapitolRecords⟩

Ideally supported by analogous situations to be found in the KG e.g.
⟨RingoStarr, recordLabel, Parlophone⟩

for which the computed explanation is:
⟨RingoStarr, associatedBand, TheBeatles⟩,
⟨TheBeatles, recordLabel, Parlophone⟩.
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ML as input to KG KG Refinement by KGE

...A-Posteriori Explanations of Link Predictions

A-posteriori methods: developed solutions

KELPIE [Rossi et al., 2022]: generates necessary and sufficient (path) conditions and an
articulated new evaluation protocol

CrossE [Zhang et al., 2019]: embedding model for link predictions providing explanations

the search for a path linking the subject h and object t of a predicted triple
⟨h, r , t⟩

Max lenght 2 → six types of paths possible:
Length 1: P1 = {⟨h, rs , t⟩}, P2 = {⟨t, rs , h⟩}
Length 2: P3 = {⟨e′, rs , h⟩, ⟨e′, r ′, t⟩}, P4 = {⟨e′, rs , h⟩, ⟨t, r ′, e′⟩},
P5 = {⟨h, rs , e′⟩, ⟨e′, r ′, t⟩}, P6 = {⟨h, rs , e′⟩, ⟨t, r ′, e′⟩},
where rs similar to r , r ′ any other relationship, e′ any other entity;

search driven by similarities between relation/entity embeddings by Euclidean
distance

structural comparisons with other paths in the KG to reinforce the reliability of the
explanation found (referred to as support)
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ML as input to KG KG Refinement by KGE

Idea: SemanticCrossE provide semantic-based explanations for link
predictions on KGs

[d’Amato et al., 2021a]

Extends CrossE by adopting a Semantic Cosine similarity that leads the
explanation process

exploits the underlying KG semantics → Domain, Range and Classes
considered
increases the cosine similarity of two (entities / relationships) vector
embeddings on the ground of available additional semantic information
which is captured by a semantic Score function

Definition (semantic Cosine)
Given KG K(E ,R), the semantic Cosine measure for two entities e, e′ ∈ E is defined by:

semCosα,β(e, e
′) = α · sScore(e, e′) + β · simcos(e, e′)

where e the respective entity embedding vector; α, β ∈ [0, 1] chosen s.t. α+ β = 1.

In the case of relations r , r ′ ∈ R the measure is defined analogously.
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ML as input to KG KG Refinement by KGE

Definition (semantic Score)

Given C set of the classes occurring in K(E ,R), and the functions Cl : E → C,
Do : R → C, and Ra : R → C that return, resp., the conjunction of the classes an entity
belongs to, and the domain and range of a relation, the semantic Score function for
pairs of entities e, e′ ∈ E is defined by:

sScore(e, e′) =
|ret[Cl(e) ⊓ Cl(e′)]|
|ret[Cl(e) ⊔ Cl(e′)]|

where retK(C) returns the entities that can be proven to belong to a given class C

Analogously, given any two relationships r , r ′ ∈ R, it is defined:

sScore(r , r ′) =
|ret[Do(r) ⊓ Do(r ′)]|
|ret[Do(r) ⊔ Do(r ′)]| +

|ret[Ra(r) ⊓ Ra(r ′)]|
|ret[Ra(r) ⊔ Ra(r ′)]|

Approximated form of semantic Cosine measure (specifically of the semantic Score
function) employed [d’Amato et al., 2021a]

Efficient computation obtained by a preliminary clustering phase [d’Amato et al., 2023]
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ML as input to KG KG Refinement by KGE

Lesson Learnt from Experiments...

Goal: Establishing the impact of an added semantic component when computing
explanations of link prediction results

Comparing ApproxSemanticCrossE and cosineCrossE to CrossE as baseline

Code and datasets publicly available8

KG #Triples #Entities #Relationships
FB15k-237 310116 14541 237

WN18 151442 40943 18
DBpedia15K 183218 12862 279

KGs adopted by CrossE considered

DBpedia15k additionally taken for testing the semantic component

CrossE adopted for the preliminary link prediction phase

Number k of similar relations; j of most similar entities; k = j = 3

Weights for the approximated semantic cosine similarity: α = 0.2; β = 0.8

8
https://github.com/pierulohacker/SemanticCrossE/tree/master/explanation
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ML as input to KG KG Refinement by KGE

...Lesson Learnt from Experiments
Metrics (as for CrossE):

Recall : ratio of triples for which the model can generate explanations

Average Support: number of explanations, on average, for each prediction

Recall and average support computed for each of the 6 types of explanation path

Different ratios (2% and 5%) of predictions considered for building explanations,
starting from those ranking higher in the link prediction results

Results:
ApproxSemanticCrossE showed improved results both in terms of recall and support

ApproxSemanticCrossE not affected by noisy (irrelevant) explanations as for
CrossE and partially cosineCrossE → qualitative evaluation conducted

Open Challenges

Taking into account additional semantics in KGs (e.g. transitivity, symmetry etc.)

Injecting BK within KELPIE framework

Develop a standardized evaluation protocol for explanations
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KG Refinement by Symbol-based Methods:

Learning Disjointness Axioms



ML as input to KG KG Refinement by Symbol-based Methods

Symbol-based methods

usually provide interpretable
models

e.g. trees, rules, logical
formulae, etc.

may be exploited for a better
understanding of the results

could be able to exploit a
background knowledge

may be combined with
deductive reasoning (e.g to
make predictions)

limited in scalability 9

9Picture from https://jaipancholi.com/model-interpretability
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ML as input to KG KG Refinement by Symbol-based Methods

Missing Disjointness Axioms: Issues

Disjointness axioms often missing [Wang et al., 2006]

Problems:
introduction of noise

K ={JournalPaper ⊑ Paper , ConferencePaper ⊑ Paper , ConferencePaper(a),Author(a) }
K is Consistent !!!
Cause Axiom: Author ≡ ¬ConferencePaper missing

counterintuitive inferences

K ={JournalPaper ⊑ Paper , ConferencePaper ⊑ Paper , ConferencePaper(a) }

K |= JournalPaper(a)?
Answer: Unknown
Cause Axiom: JournalPaper ≡ ¬ConferencePaper missing

hard collecting negative examples when adopting numeric
approaches
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ML as input to KG KG Refinement by Symbol-based Methods

Observation: extensions of disjoint concepts do not overlap

Question: would it be possible to automatically capture disjointness axioms by analyzing
the data configuration/distribution?

Idea: Exploiting (Conceptual) clustering methods for mining disjointness axioms

[Rizzo et al., 2021]

Definition (Problem Definition)

Given

an ontological knowledge base K = ⟨T ,A⟩
a set of individuals (aka entities) I ⊆ Ind(A)

Find

n pairwise disjoint clusters {C1, . . . ,Cn}
for each i = 1, . . . , n, a concept description Di that describes Ci ,
such that:

∀a ∈ Ci : K |= Di (a)
∀b ∈ Cj , j ̸= i : K |= ¬Di (b).

Hence ∀Di ,Dj , i ̸= j : K |= Dj ⊑ ¬Di .
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ML as input to KG KG Refinement by Symbol-based Methods

Learning Disjointness Axioms: Developed
Methods

Statistical-based approach

NAR - exploiting negative association rules [Fleischhacker and Völker, 2011]

PCC - exploiting Pearson’s correlation coeff. [Völker et al., 2015]

do not exploit any background knowledge and reasoning capabilities

Disjointness axioms learning/discovery can be hardly performed without
symbol-based methods
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ML as input to KG KG Refinement by Symbol-based Methods

Terminological Cluster Tree

Defined a method 10 for eliciting disjointness axioms [Rizzo et al., 2021]

solving a clustering problem via learning Terminological Cluster Trees

providing a concept description for each cluster

Definition (Terminological cluster tree (TCT))

A binary logical tree where
a leaf node stands for a cluster of individuals C
each inner node contains a description D (over the signature of K)
each departing edge corresponds to positive (left) and negative (right)
examples of D

10Implemented system publicly available at https://github.com/Giuseppe-Rizzo/TCTnew
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ML as input to KG KG Refinement by Symbol-based Methods

Example of TCT

Given I ⊆ Ind(A), an example of TCT describing the AI research
community

Person

Person ⊓ ∃hasPublication.⊤

Person ⊓ ∃hasPublication.AIPaper

C1 C2

C3

¬Person ⊓ Proceedings

C4 C5
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ML as input to KG KG Refinement by Symbol-based Methods

Collecting Disjointness Axioms

Given a TCT T:
Step I:

Traverse the T to collect the concept descriptions describing the
clusters at the leaves

A set of concepts CS is obtained

Step II:
A set of candidate axioms A is generated from CS:

an axiom D ⊑ ¬E (D,E ∈ CS) is generated if
D ̸≡ E (or D ̸⊑ E or viceversa - reasoner needed)
E ⊑ ¬D has not been generated
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ML as input to KG KG Refinement by Symbol-based Methods

Inducing a TCT

Given the set of individuals I and ⊤ concept

Divide-and-conquere approach adopted

Base Case: test the stopCondition
the cohesion of the cluster I exceeds a threshold ν

distance between medoids below a threshold ν

Recursive Step (stopCondition does not hold):
a set S of refinements of the current (parent) description C generated
the bestConcept E∗ ∈ S is selected and installed as current node

the one showing the best cluster separation ⇔ with max distance
between the medoids of its positive P and negative N individuals

I is split in:
Ileft ⊆ I ↔ individuals with the smallest distance wrt the medoid of P
Iright ⊆ I ↔ individuals with the smallest distance wrt the medoid of N
reasoner employed for collecting P and N

Note: Number of clusters not required - obtained from data distribution
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ML as input to KG KG Refinement by Symbol-based Methods

Lesson Learnt from experiments

Experiments performed on ontologies publicly available

Goal I: Re-discover a target axiom (existing in K)
Metrics # discovered axioms and #cases of inconsistency
Results:

target axioms rediscovered for almost all cases
additional disjointness axioms discovered in a significant number
limited number of inconsistencies found

Ontology DL Language #Concepts #Roles #Individuals #Disj. Ax.s
BioPax ALCIF(D) 74 70 323 85
NTN SHIF(D) 47 27 676 40

Financial ALCIF(D) 60 16 1000 113
GeoSkills ALCHOIN (D) 596 23 2567 378
Monetary ALCHIF(D) 323 247 2466 236

DBPedia3.9 ALCHI(D) 251 132 16606 11
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Lesson Learnt from experiments [. . . cont.]

Goal II:
Re-discover randomly selected target axioms added according to the
Strong Disjointness Assumption [Schlobach, 2005]

two sibling concepts in a subsumption hierarchy considered as disjoint

comparative analysis with statistical-based methods:
PCC - based on Pearson’s correlation coefficient [Völker et al., 2015]

NAR - exploiting negative association rules [Fleischhacker and Völker, 2011]

Setting:
A copy of each ontology created removing 20%, 50%, 70% of the
disjointness axioms
Metrics: rate of rediscovered target axioms, #cases of inconsistency,
# addional discovered axioms

C. d’Amato (UniBa) Semantics, ML & KGs KR 2023 44 / 52



ML as input to KG KG Refinement by Symbol-based Methods

Lesson Learnt from experiments [. . . cont.]

Results:
almost all axioms rediscovered

Rate decreases when larger fractions of axioms removed, as expected
TCT outperforms PCC and NAR wrt additionally discovered axioms
whilst introducing limited inconsistency

TCT allows to express complex disjointness axioms
PCC and NAR tackle only disjointness between concept names

Exploiting K as well as the data distribution improves disjointness
axioms discovery

Open Challenge
Develop an extensive experimental user study on the validity and
significance of the complex disjointness axioms discovered by TCT
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Conclusions

Conclusions:
Injecting semantics and exploiting reasoning capabilities may improve
the effectiveness of ML solutions for KG

Framework for injecting BK into KGE models
Solution for injecting semantics when computing a-posteriori
explanations to link predictions

Symbol-based methods useful for supplementing schema level
information

Conceptual Clustering for Learning Disjointness Axioms

Next Research Challenges:
Extend the framework for injecting BK to more complex KGE models

Empower the semantic explanation process with additional schema
axioms

Scalability of symbol-based learning methods still need to be improved

New solutions required for enhancing LLMs with KG semantics
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