Preference Elicitation and Preference Learning in Social Choice: New Foundations for Group Recommendation

Craig Boutilier University of Toronto

(Joint work with Tyler Lu)

- Social choice: study of collective decision making
- Aggregation of individual preferences determines a consensus outcome for some population
 - Political representatives, committees, public projects,...
 - Studied for millennia, formally for centuries
- Increasing importance for low stakes domains...

Social Choice

- Computational models/tradeoffs inherently interesting
 - Winner determination, manipulation/control, approximations, computational/communication complexity
- Decision making in multiagent systems
- Preference and rank learning in machine learning
 - Ready availability of partial preference data (web search data, ratings data in recommender systems, ...)
- Complexity: combinatorial nature of alternatives

Why Computational Social Choice

- Move to lower stakes, complex domains makes new demands on social choice
 - New models and decision criteria reflecting new uses
- Focus today: minimizing amount of information needed to come to *good* consensus choice
 - Robust decision making with partial rankings/votes
 - Incremental elicitation of voter preferences
 - Exploiting distributional information
 - Learning probabilistic models of population preferences
 - Extensions:
 - Combinatorial alternative spaces
 - Voting on social networks

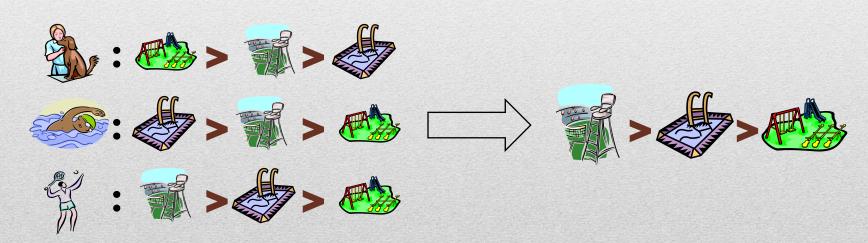
Our Agenda

- Social Choice: Main Concepts
- Regret-based Vote Elicitation
 - Minimax regret (robustness criterion) for partial vote
 - Polytime computation of MMR for certain rules
 - Elicitation of voter preferences using MMR
- Optimal One-round Elicitation Protocols
- Brief: Learning Mallows Models of Population Prefs
- Next Steps

Overview**

• Alternative set $A = \{a_1, ..., a_m\}$

- *Voters* $N = \{1...n\}$, each with preferences over A
- *Vote* v_i of voter i: a linear ordering (permutation) of A
- *Profile* is collection of votes $\mathbf{v} = (v_1, ..., v_n)$
- Winner: alternative maximizing "consensus"
 - or sometimes a consensus ranking



Social Choice: Basic Framework

- *Voting rule r:* $V \rightarrow A$ selects a winner given a profile
- *Plurality:* winner *a* with most 1st-place votes
 - voters needn't provide full ranking
- *Positional scoring:* Assign *score* α to each rank position with $\alpha(1) \ge \alpha(2) \ge ... \alpha(m)$
 - *Borda count* well-known: $\alpha = \langle m-1, m-2, ..., 0 \rangle$
 - Winner: *a* with max sum of scores: $\sum_i \alpha(v_i(a))$
 - Plurality, k-approval, k-veto special cases
- Maxmin Fairness (egalitarian):
 - Score of a is $min\{i: m v_i(a)\}$
 - Choose *a* with highest score

Voting Rules

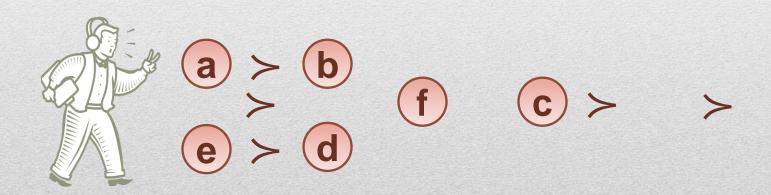
- Many other rules: Copeland, maximin, Bucklin, etc.
- Most voting rules have "natural" scoring functions s(a, v)
- s(a, v) measures "quality" of alternative a given profile v
- Rule r chooses $r(v) \in argmax \{s(a, v) : a \in A\}$

Score-based Voting Rules

- Use of complex (rank-based) voting schemes rare
 - Cognitive complexity, communication costs, monetary costs
- Elicitation of partial votes could ease this burden
 - Find relevant comparisons... or even approximate winners
- Voting Protocol with Approximation: Ask a few queries of voters: if close enough, stop; otherwise ask a few more; continue until satisfied
- Theoretically, relevance won't save much:
 - Communication complexity *O(nm log m)* for Borda, etc. **[CS EC-05]**
 - This doesn't mean practical savings are not possible!

Vote Elicitation (Lu, B. IJCAI-11)

- *Partial vote* p_i of voter i: consistent set of pairwise comparisons of form $a_i > a_k$
 - · Captures most natural constraints: paired comp, top-k, etc.
- Partial profile $p = (p_1, ..., p_n)$
- Completions $C(p_i)$, C(p): set of votes extending p_i , p



Partial Vote Profiles

- In general, may want to decide given a partial profile
 - Robustness criteria rarely discussed in social choice
- We propose minimax regret to determine winners

$$Regret(a, \mathbf{v}) = max_{a' \in A}s(a', \mathbf{v}) - s(a, \mathbf{v})$$

$$= s(r(\mathbf{v}), \mathbf{v}) - s(a, \mathbf{v})$$

$$PMR(a, a', \mathbf{p}) = max_{\mathbf{v} \in C(\mathbf{p})}s(a', \mathbf{v}) - s(a, \mathbf{v})$$

$$MR(a, \mathbf{p}) = max_{\mathbf{v} \in C(\mathbf{p})}Regret(a, \mathbf{v})$$

$$= max_{a' \in A}PMR(a, a', \mathbf{p})$$

$$Adversarial choice$$

$$MMR(\mathbf{p}) = min_{a \in A}MR(a, \mathbf{p})$$

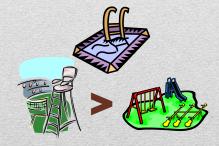
$$a_{\mathbf{p}}^* \in \underset{a \in A}{\operatorname{argmin}} MR(a, \mathbf{p})$$

$$\mathbf{Best}$$

$$\mathbf{response}$$

Robust Winner Determination

Proposed Winner: Tennis



Minimax Regret: Illustration

Proposed Winner: Tennis

Borda Score(Tennis) = 2 Borda Score (Park) = 4Max Regret(Tennis) = 2 (4-2)

Proposed Winner: Pool

Minimax Regret: Illustration (Borda)

Proposed Winner: Tennis

Borda Score(Tennis) = 2 Borda Score (Park) = 4 Max Regret(Tennis) = 2 (4-2)

Proposed Winner: Pool

Borda Score(Tennis) = 6 Borda Score (Pool) = 0 Max Regret(Pool) = 6 (6-0)

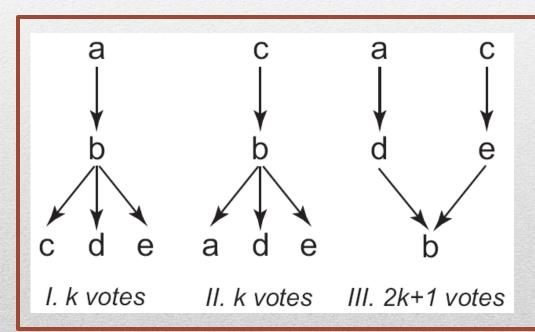
Minimax Optimal: Tennis Minimax Regret: 2

Minimax Regret: Illustration (Borda)

- MMR offers a natural robustness criterion
 - candidate with tightest error bounds (loss wrt optimal)
 - provably optimal if MMR=0
- Contrast with maximin
 - provides quality guarantee, not optimality guarantee
- Contrast with Bayesian methods, which have/are:
 - need for a prior
 - no (worst-case) guarantees
 - computationally difficult (even to approximate)

Why Minimax Regret

- MMR(p)=0 iff winner a_p^* is a necessary co-winner
- Obs: MMR computation at least as hard as NecCo-Win
- **Obs:** MMR-winner may not be a *possible winner*
 - In fact, all possible winners may have high max regret



Assume 2-approval:

- Only a, c are PWs: one has score at least 2k+1, while b has score 2k
- MR(b) = k+1
- MR(a) = MR(c) = 2k+1

MR of a, c twice that of b

Properties of Minimax Regret Solution**

- MMR for many problems often specified as an IP
 - Problematic for voting: too many voters/variables
- Instead, compute *PMR* (a, w, p) for all m^2 pairs (a, w)
 - Then $MMR(\mathbf{p}) = min_a max_w PMR(a, w, \mathbf{p})$

PMR	a	b	С	MR
а	0	2	2	2
b	2	0	6	6
С	5	3	0	5

- PMR can be computed in polytime for many rules
 - find worst case completion of each voter's partial vote p_i ; can usually be done independently for each voter
 - Xia, Conitzer (AAAI08) use similar ideas for necessary winners
 - we illustrate with the Borda rule

Computing Minimax Regret

- We illustrate with Borda (positional) scoring
- Positional: additively decomposable: $s(a, \mathbf{v}) = \sum_i s(a, v_i)$
- Thus PMR decomposable: complete each p_i independently

$$Regret(a, w, \mathbf{v}) = s(w, \mathbf{v}) - s(a, \mathbf{v})$$

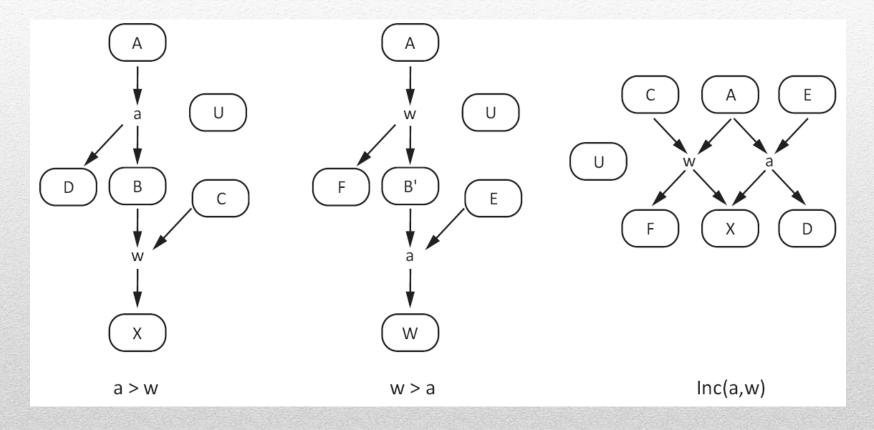
$$= \sum_{i} s(w, v_i) - \sum_{i} s(a, v_i)$$

$$= \sum_{i} [s(w, v_i) - s(a, v_i)].$$

$$PMR(a, w, \mathbf{p}) = \max_{\mathbf{v} \in C(\mathbf{p})} s(w, \mathbf{v}) - s(a, \mathbf{v})$$
$$= \sum_{i} \max_{v_i \in C(p_i)} s(w, v_i) - s(a, v_i).$$

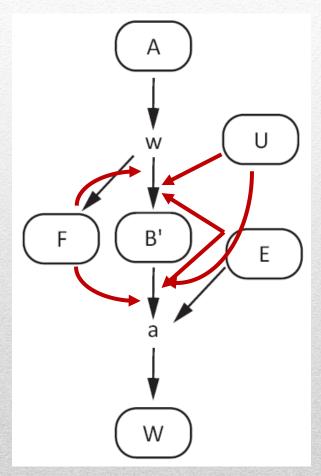
Computing Minimax Regret**

• Fix partial vote *p*: proposed alternative *a* and adversarial witness *w* stand in only one of three relations in *p*



Computing Minimax Regret

Case 2: Maximize PMR(a,w) in only "one" way:



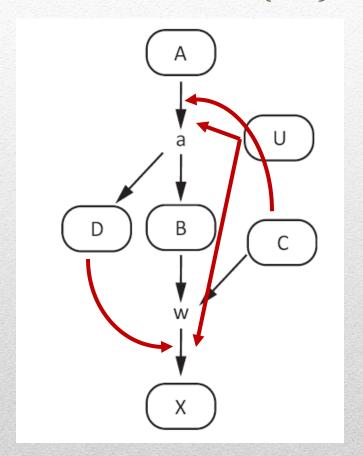
$$PMR(a,w)$$

$$= |B' \cup F \cup E \cup U| + 1$$

$$= m - (|A \cup W| + 1)$$

Computing Minimax Regret

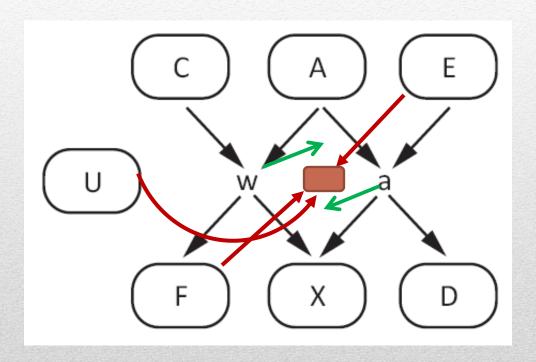
• Case 1: Maximize *PMR(a,w)* in only "one" way:



$$PMR(a,w) = -(|B| + 1)$$

Computing Minimax Regret**

• Case 3: Maximize *PMR(a,w)* in only "one" way:



$$PMR(a,w) = |F \cup E \cup U| + 1$$

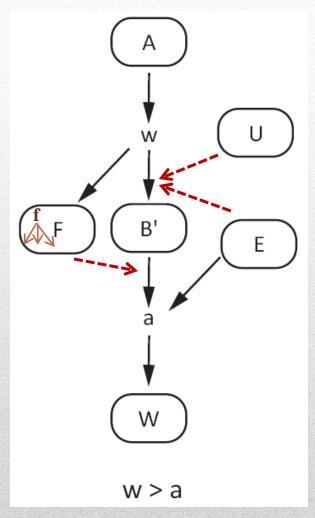
Computing Minimax Regret**

- Similar analysis: other positional scoring rules
- Similar approach for non-decomposable scoring rules
- Max regret computation is polytime for:
 - Positional scoring rules
 - Egalitarian (maxmin fairness)
 - Bucklin
 - Maximin

Computing Minimax Regret

- If MMR(p) too high, refine knowledge of voter preferences
- Current Solution Strategy (CSS):
 - Use MMR solution (a^*,w) to generate query: if we don't reduce $PMR(a^*,w)$, MMR will not be reduced
 - So find some voter i with vote p_i and ask query with potential to reduce advantage of w over a^* in $C(p_i)$
 - For each voter, queries considered depend on structural properties of partial vote (whether Case 1, 2, 3; and size of sets)

Regret-based Vote Elicitation



Case 2: four reasonable query types

- a > f for some $f \in F$
 - Max potential: f at "top" of large group

a > u for some $u \in U$

Max potential: u at "top" of large group

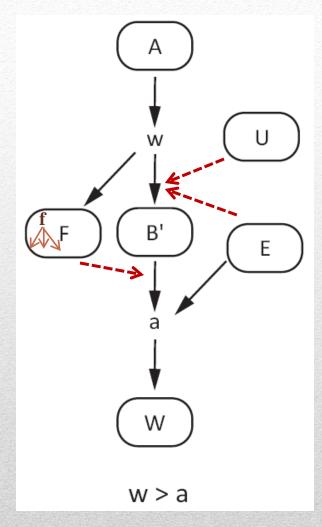
ne ion serve e é

surface one are bl

Max potential: u.at "bottom" of large group

Note: if MMR>0, one of U,E,F nonempty for some voter (or sets in cases 1, 3)

Regret-based Vote Elicitation



Case 2: four reasonable query types

- a > f for some $f \in F$
 - Max potential: f at "top" of large group
- a > u for some $u \in U$
 - Max potential: *u* at "top" of large group
- e > w for some $e \in E$
 - Max potential: e at "bottom" of large group
- u > w for some $u \in U$
 - Max potential: u at "bottom" of large group
- Note: if MMR>0, one of U,E,F nonempty for some voter (or sets in cases 1, 3)

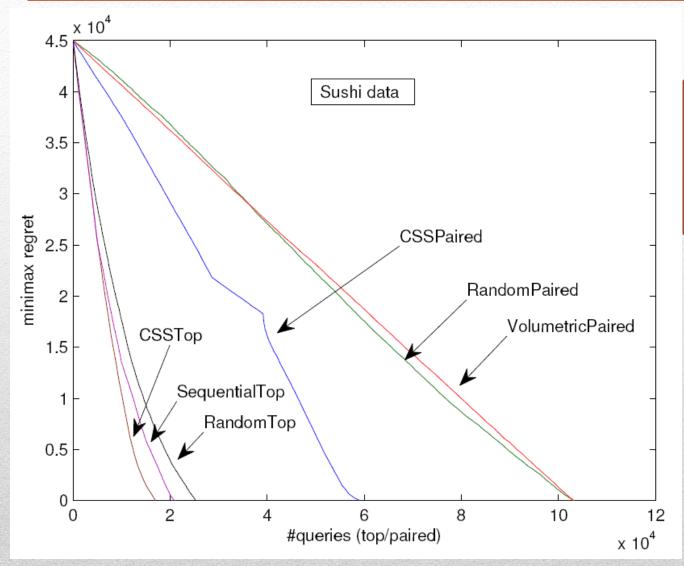
Regret-based Vote Elicitation

- Intuitions behind pairwise CSS can be generalized to top-t queries (only pick voter, not alternative pair)
- Compare CSS to two strategies
 - Volumetric: choose voter/candidate-pair which introduces greatest number of new paired comparisons

$$Vol(p_k) = \max_{a_i, a_j} \min\{|tc(p_k \cup \{a_i \succ a_j\})|, tc(v \cup \{a_j \succ a_i\})\}$$

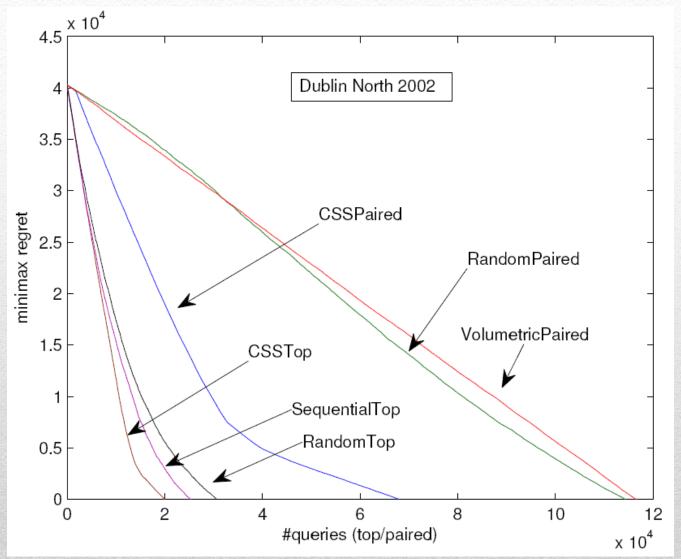
Rand: random voter/candidate pair

Vote Elicitation: Experiments*



Sushi: 5000 rankings of 10 varieties of sushi

Vote Elicitation: Sushi



Irish: 2002 electoral data (Dublin North); 3662 rankings over 12 candidates

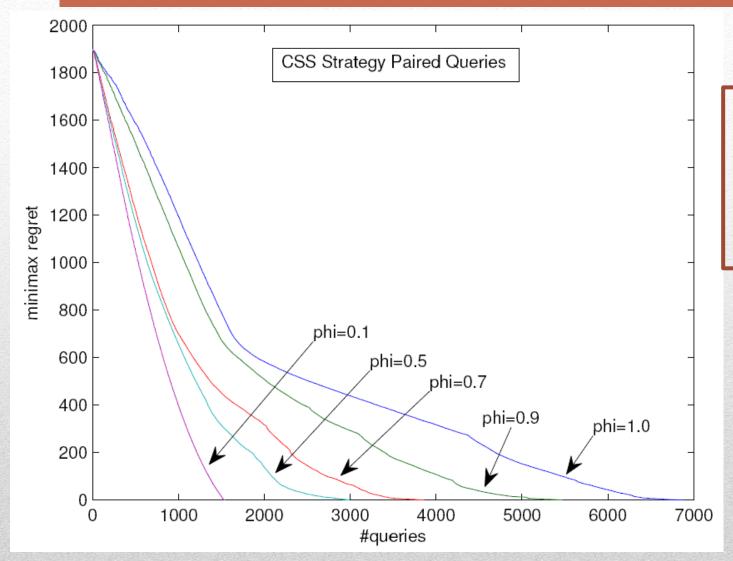
Vote Elicitation: Dublin North 2002

- Let $d(r, \sigma)$ denote Kendall-tau distance
 - Number of pairwise inversions (swaps) between r, σ
- Let σ be some central/modal ranking
- *Mallows* ϕ -*model* (with dispersion ϕ) specifies P(r):

$$P(r) = P(r \mid \sigma, \phi) = \frac{1}{Z} \phi^{d(r,\sigma)}$$

- If $\phi = 1$, P is uniform (IC); as $\phi \rightarrow 0$, P concentrates on σ
- Unimodal nature of model inflexible; but mixtures of Mallows models can reasonably capture certain types of population preferences

Mallows Models



Mallows: 100 random rankings over 20 items; vary dispersion ϕ

Vote Elicitation: Mallows

- MMR=0 after k paired comparisons per voter
 - Sushi: CSS 11.82; Vol 20.64; Rand 20.63; MergeSort 25
 - *Irish:* CSS 18.57; Vol 31.82; Rand 31.22; MergeSort 33
- MMR=0 after k top-t queries per voter
 - Sushi: CSS 3.40; Vol 4.18; Rand 5.50
 - *Irish:* CSS 5.47; Vol 6.91; Rand 8.38
- Anytime performance better for CSS as well
 - E.g., reach 18% of initial regret on Irish data set after only 5.82 queries (vs. 25.77 Vol; 24.03 Rand)

Summary of Results

- Fully sequential elicitation often not practical
 - Tradeoff: quality, information elicited, rounds/interruption
 - see Kalech et al. [JAAMAS 2011]
- Reduce interruption cost by using coarser "rounds"
 - E.g., ask each voter for their *top k* candidates
 - Stop if MMR low enough
 - Otherwise select a few voters and ask for their *next k'* candidates; etc.
- *Suitable choice of k* balances the three criteria

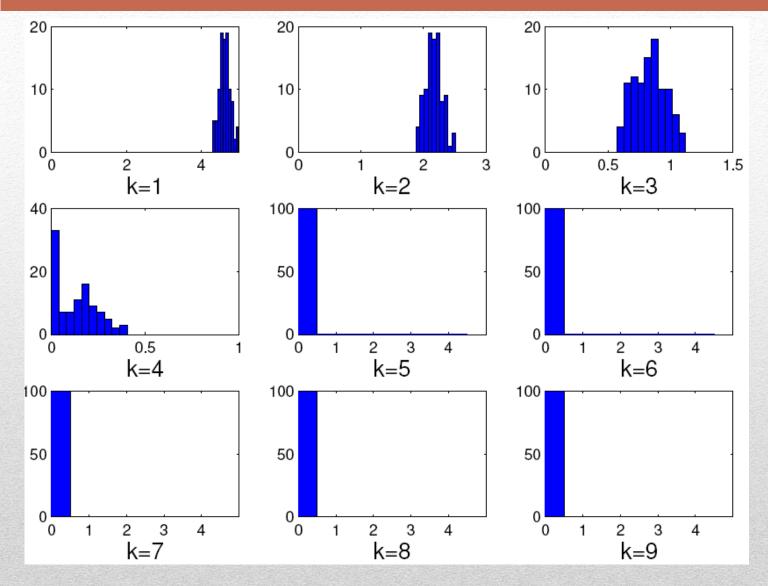
Single vs. Multi-round Elicitation

- General framework for addressing tradeoffs
- Focus on optimizing single-round protocols
 - for one round of elicitation, what is trade off between information elicited (k) and minimax regret?
- Requires a probabilistic model Pr of voter preferences
 - weak guarantees otherwise (hard to predict MMR)
- Our goal: find minimal k s.t. $Pr(MMR < \varepsilon) > 1 \delta$
 - regret tolerance ε
 - confidence δ

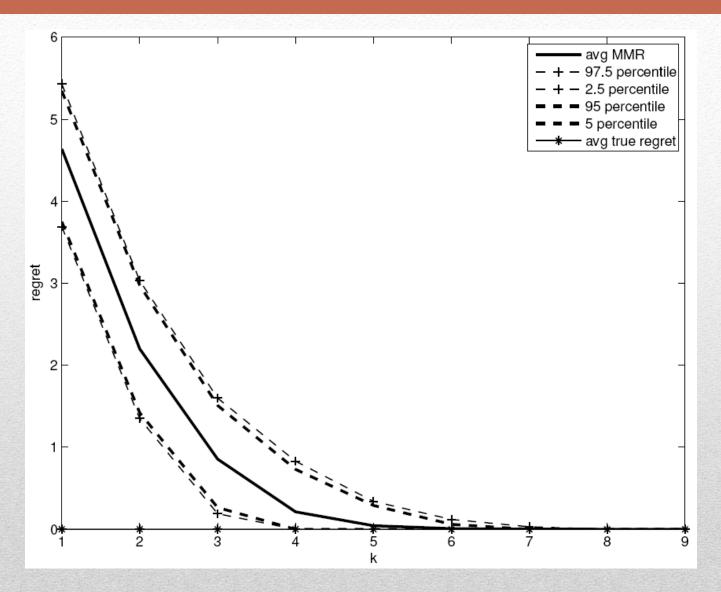
Optimizing Single-round Protocols (Lu, B. ADT-11)

- Many models of ranking distributions:
 - Mallows, Plackett-Luce, Bradley-Terry, impartial culture, ...
 - in principal, can derive analytical results for each
- We propose an empirical (sampling) methodology
 - sample t vote profiles
 - learned model, generative process, subsample data sets
 - compute MMR for each profile and for each k < m-1
 - use empirical distribution over MMR to determine suitable k achieves desired MMR < ε with desired probability Pr > 1- δ

Exploiting Distribution: Sampling



MMR Histograms: Mallows (m=10, n=1000, ϕ =0.6, Borda)

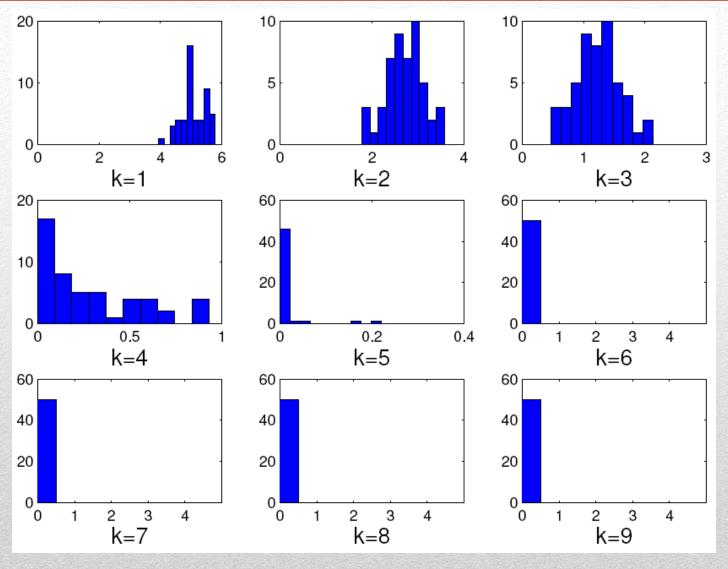


MMR Confidence Plot: Mallows (m=10, n=100, $\phi=0.6$, Borda)

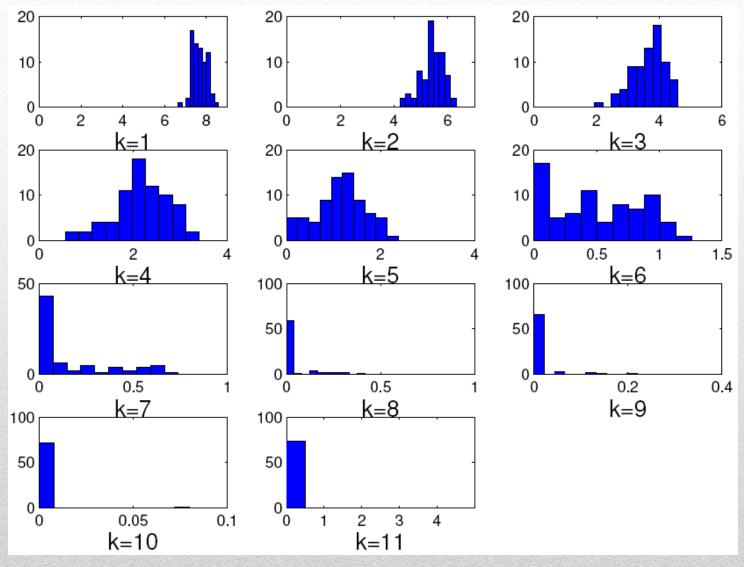
- One may use methodology purely heuristically
 - actual MMR (after elicitation) can suggest further queries
- Theoretical sample complexity bounds possible
 - assume sampling accuracy ξ and sampling confidence η
 - with t sampled profiles, where: $t \geq \frac{1}{2\xi^2} \ln \frac{2(m-2)}{\eta}$.
 - output min \hat{k} satisfying: $\hat{q}_k \equiv \frac{|\{i \leq t : MMR(\mathbf{p}_i[k]) \leq \varepsilon\}|}{t} > 1 \delta \xi$

Theorem 1. Let ε , δ , η , $\xi > 0$. If sample size t satisfies Eq. 4, then for any preference profile distribution P, with probability $1 - \eta$ over i.i.d. samples $\mathbf{v}_1, \ldots, \mathbf{v}_t$, we have: (a) $\hat{k} \leq k^*$; and (b) $P[MMR(\mathbf{p}[\hat{k}]) \leq \varepsilon] > 1 - \delta - 2\xi$.

Sample Complexity



MMR Histograms: Sushi Data Set (50 samples, 100 voters each)



MMR Histograms: Dublin Data Set (73 samples, 50 voters each)

- Where do probabilistic models come from?
 - can be learned from sample/survey/historical data
 - two key difficulties: inference and learning
- Much research in stats, psychometrics, ML, etc.
 - but learning Mallows models with pairwise evidence ignored
- *Inference task:* given paired comparisons (partial vote) p_i , what is posterior over i's ranking: $P(r|p_i; \sigma, \phi)$
- *Learning task:* given partial profile $p = (p_1, ..., p_n)$, what is max likelihood Mallows model/mixture?
 - Solvable by EM if you can solve the inference task

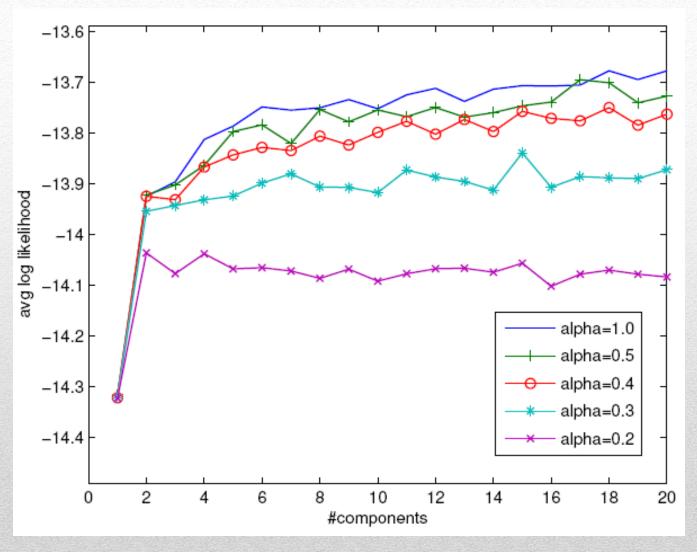
Learning Probabilistic Models (Lu, B. ICML-11)

- We adopt a sample-based approach
- Repeated Insertion Model (DPR-04)
 - generates samples (rankings) according to $P(r; \sigma, \phi)$
 - simple, very tractable model (cf. Young, Mallows)
- Our Generalized Repeated Insertion Model (GRIM)
 - generates samples (rankings) from to $P(r; \mathbf{p}, \sigma, \phi)$
 - problem intractable in general (#P-hard)
 - simple, very tractable approximations with bounds
 - works much better in practice than bounds suggest
 - procedure is exact in many important special cases
 - E.g., samples are full rankings, top-k or partitioned preferences

Attacking the Inference Problem*

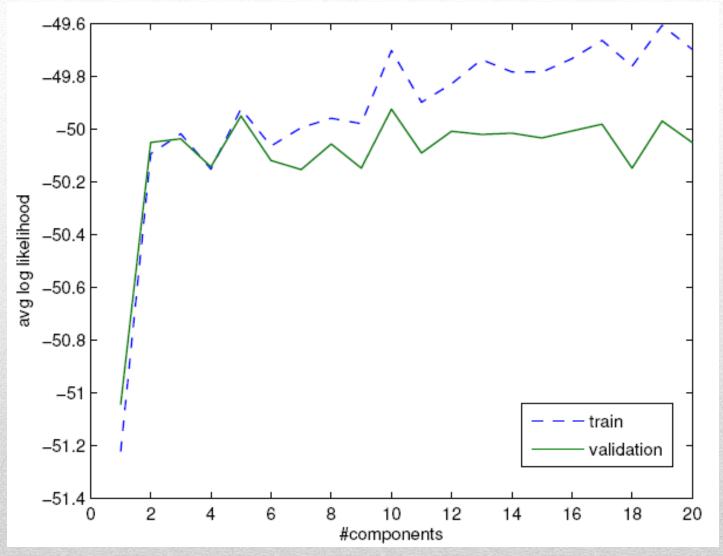
- With sampling procedure in hand, can learn Mallows mixtures using EM from pairwise preferences
 - Tackled previously only using full voter rankings (Murphy, Martin 2003) or top-k (Busse, et al. 2007)
 - We use generalized EM with (GRIM) sample-based inference for computing expectations

Tackling the Learning Problem**



Learning Results (Sushi)**

$\pi_0 = 0.17$	$\pi_1 = 0.15$	$\pi_2 = 0.17$
$\phi_0 = 0.66$	$\phi_1 = 0.74$	$\phi_2 = 0.61$
fatty tuna	$_{ m shrimp}$	sea urchin
salmon roe	sea eel	fatty tuna
tuna	squid	sea eel
sea eel	$_{ m egg}$	$_{ m salmon}$ roe
tuna roll	fatty tuna	shrimp
shrimp	tuna	tuna
egg	tuna roll	squid
squid	cucumber roll	$\operatorname{tuna}\operatorname{roll}$
cucumber roll	salmon roe	egg
sea urchin	sea urchin	cucumber roll
$\pi_3 = 0.18$	$\pi_4 = 0.16$	$\pi_5 = 0.18$
$\pi_3 = 0.18$ $\phi_3 = 0.64$	$\pi_4 = 0.16$ $\phi_4 = 0.61$	$\pi_5 = 0.18$ $\phi_5 = 0.62$
	-	0
$\phi_3 = 0.64$	$\phi_4 = 0.61$	$\phi_5 = 0.62$
$\phi_3 = 0.64$ fatty tuna	$\phi_4 = 0.61$ fatty tuna	$\phi_5 = 0.62$ fatty tuna
$ \phi_3 = 0.64 $ fatty tuna tuna	$\phi_4 = 0.61$ fatty tuna sea urchin	$\phi_5 = 0.62$ fatty tuna sea urchin
$\phi_3 = 0.64$ fatty tuna tuna shrimp	$\phi_4 = 0.61$ fatty tuna sea urchin tuna	$\phi_5 = 0.62$ fatty tuna sea urchin salmon roe
$\phi_3 = 0.64$ fatty tuna tuna shrimp tuna roll	$\phi_4 = 0.61$ fatty tuna sea urchin tuna salmon roe	$\phi_5 = 0.62$ fatty tuna sea urchin salmon roe shrimp
$\phi_3 = 0.64$ fatty tuna tuna shrimp tuna roll squid sea eel egg	$\phi_4 = 0.61$ fatty tuna sea urchin tuna salmon roe sea eel	$\phi_5 = 0.62$ fatty tuna sea urchin salmon roe shrimp tuna
$\phi_3 = 0.64$ fatty tuna tuna shrimp tuna roll squid sea eel	$\phi_4 = 0.61$ fatty tuna sea urchin tuna salmon roe sea eel tuna roll	$\phi_5 = 0.62$ fatty tuna sea urchin salmon roe shrimp tuna squid
$\phi_3 = 0.64$ fatty tuna tuna shrimp tuna roll squid sea eel egg	$\phi_4 = 0.61$ fatty tuna sea urchin tuna salmon roe sea eel tuna roll shrimp	$\phi_5 = 0.62$ fatty tuna sea urchin salmon roe shrimp tuna squid tuna roll



Learning Results (MovieLens)**

- Group choice: items with combinatorial structure
 - e.g., schedules, products for group use, organizational decisions (e.g., sourcing), multi-issue elections, etc.
 - representation a key issue (e.g., CP-nets)
- Minimax regret used for *single-agent* robust optimization, elicitation in combinatorial domains
 - product configuration
 - sourcing/procurement
 - resource allocation (e.g., autonomic computing)
- Do optimization, elicitation methods extend to voting?

Combinatorial Preference Aggregation

Example: COP with additive objective

$$max \sum_{i} w_{i} x_{i} = \boldsymbol{w} \cdot \boldsymbol{x} \quad s.t. \ \boldsymbol{x} \in \boldsymbol{X}_{f}$$

- Utility parameters w unknown: $w \in W$
 - difficulties computing minimax regret
 - minimax (integer) program with quadratic objective

$$MMR(W) = \min \max_{x \in X_f} \max_{w \in W} x' - w \cdot x$$

$$x \in X_f \quad w \in W \quad x' \in X_f$$

- General Approach:
 - Benders' decomp, constraint generation: minimax program
 - various encoding tricks to linearize quadratic terms

Computing Minimax Regret

Convert MMR to (linear) IP with infinitely many constraints

$$\min_{\mathbf{x} \in \mathbf{X}} \delta$$
s.t. $\delta \ge \sum_{i=1}^{k} w_i x'_i - w_i x_i$; $\forall \mathbf{x}' \in \mathbf{X}_f, \mathbf{w} \in \mathbf{W}$

Repeatedly solve

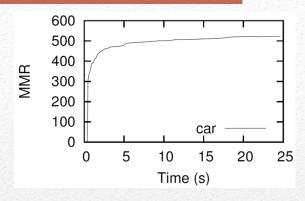
$$\min_{\mathbf{x} \in \mathbf{X}} \delta$$
s.t. $\delta \ge \sum_{i=1}^{k} w_i x'_i - w_i x_i$; $\forall (\mathbf{x}', \mathbf{w}) \in \text{Gen}$

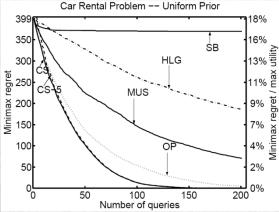
- Let solution be x^* with objective value δ^*
- Compute $MR(x^*, W)$ of solution x^* : MR = r, witness (x'', w'')
 - if $r > \delta^*$, add (x'', w'') to *Gen*, repeat; else terminate

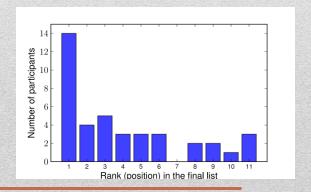
MMR: Constraint Generation**

- MMR computation effective
 - excellent anytime performance (upper, lower bounds)
- Current solution heuristic very effective for elicitation
 - typically very few queries
 - successful user studies
- Applied in several large domains
 - sourcing/combinatorial auctions
 - apartment search, product configuration
 - autonomic computing (resource alloct'n)
 - assistive technologies, etc...

Regret-based Elicitation

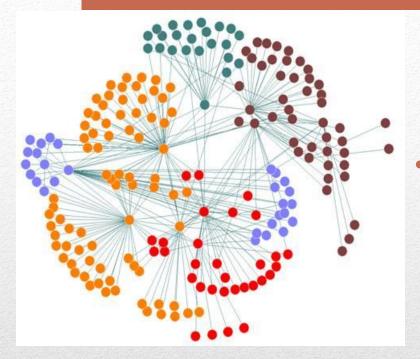






- Tackling group elicitation in combinatorial domains
 - optimization difficult already in single agent domains
 - more subtle tradeoffs: quality, computation, elicitation burden
 - preference aggregation schemes more complex
 - CP-nets [Rossi, Venable, Walsh; Lang, Xia, Conitzer, Maudet; Li, ...]; GAI networks [Gonzales, Perny], etc.
 - qualitative vs. quantitative individual preferences
 - aggregate based on total preference? or attribute-wise?
 - if sequential, what are proper voting strategies? (equilibrium reasoning required)
 - if sequential/partial, how to optimize order?

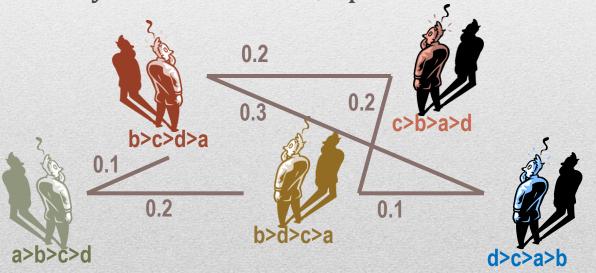
Challenges in Combinatorial Aggregation



- Social networks shape behavior
 - Homophily well-documented
 - Often claimed that preferences correlated; but less evidence to this effect
- Valuable source of preference data: probabilistic models of preference correlation on networks?
 - impact on elicitation could be immense
 - both for individual or social choice problems

Social Networks as Preference Source

- Many social choice problems occur in *network context*
 - e.g., externalities in assignment (BGM EC-12), matching (BLCHW10), voting (ABKLT EC-12), coalition formation (BL11)
- Voting with empathetic preferences [Saheli-Abari, B. 12]
 - utility trades off intrinsic and empathetic preference
 - e.g., casual group decision, elections, supply chain, ...
- Many new elicitation, optimization challenges



Fixed point solution (à la PageRank):
Simple weighted voting scheme.

Social Choice on Social Networks

- Just a starting point: *learning*, *probabilistic models*, *decision-theoretic optimization* for effective elicitation and decision making in social choice settings
 - Move toward behavioural SC, connections to social media
- Next steps
 - Sophisticated, distribution-aware elicitation schemes
 - Learning other distributional models (e.g., Plackett-Luce)
 - Distributions over multi-attribute preference domains
 - Exploiting social media: networks, CF, sentiment, ...
 - Computation, elicitation in combinatorial domains
 - New analyses of manipulation
 - Other social choice problems: matching; multiwinner/segmentation; allocation; etc.

Next Steps