<div dir="ltr"><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Dear planning and learning enthusiasts,</span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">We are pleased to invite you to attend the tutorial “</span><span style="color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Domain Model Learning in AI Planning</span><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">”, to be held at AAAI 2026 in Singapore EXPO on Wednesday, January 21st (half-day), which covers the foundations, recent advances in techniques and tools, and open challenges for automated domain-model learning.</span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Automated planning heavily relies on the availability of planning domain models that describe the environment dynamics. However, handcrafting such models is widely known to be time-consuming, prone to errors, and to require extensive knowledge about the environments. For these reasons, the AI planning community has proposed several theories and algorithms that automatically learn domain models.</span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">The tutorial is aimed at researchers, practitioners, and students interested in techniques for learning planning domain models. The objective of this tutorial is to give participants a clear </span><span style="color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">overview of state-of-the-art methods</span><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"> for learning domain models under different assumptions (e.g., partially or noisy observability), to enable them to effectively use </span><span style="color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">open-source frameworks and tools</span><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"> for domain-model learning, and highlight </span><span style="color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">open research challenges</span><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"> at the intersection of machine learning and symbolic planning. </span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">If you have any questions, please do not hesitate to contact us. Further details about the tutorial are available on the tutorial and AAAI-2026 websites: </span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><a href="https://domain-learning.github.io/" target="_blank" style="text-decoration-line:none"><span style="background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;text-decoration-line:underline;vertical-align:baseline">https://domain-learning.github.io</span></a></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><a href="https://aaai.org/conference/aaai/aaai-26/tutorial-and-lab-list/#th17" target="_blank" style="text-decoration-line:none"><span style="background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;text-decoration-line:underline;vertical-align:baseline">https://aaai.org/conference/aaai/aaai-26/tutorial-and-lab-list/#th17</span></a></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><br></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.38;text-align:justify;margin-top:12pt;margin-bottom:12pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">We look forward to your participation in this AAAI-26 tutorial!</span></p><br style="font-family:verdana,sans-serif"><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.2;text-align:justify;margin-top:12pt;margin-bottom:0pt"><span style="color:rgb(0,0,0);background-color:transparent;font-style:italic;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizing Committee:</span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.2;text-align:justify;margin-top:12pt;margin-bottom:0pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Prof. Roni Stern, BGU</span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.2;text-align:justify;margin-top:12pt;margin-bottom:0pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Prof. Christian Muise, Queen’s University</span></p><p dir="ltr" style="font-family:verdana,sans-serif;line-height:1.2;text-align:justify;margin-top:12pt;margin-bottom:0pt"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Dr. Leonardo Lamanna, FBK</span></p></div>
<br>
<div style="font-family:Arial,Helvetica,sans-serif"><span style="font-size:x-small">--</span></div><div><div><font size="1"><font face="Arial, Helvetica, sans-serif">Le informazioni contenute nella presente comunicazione sono di natura </font><span style="font-family:Arial,Helvetica,sans-serif">privata e come tali sono da considerarsi riservate ed indirizzate </span><span style="font-family:Arial,Helvetica,sans-serif">esclusivamente ai destinatari indicati e per le finalità strettamente </span><span style="font-family:Arial,Helvetica,sans-serif">legate al relativo contenuto. Se avete ricevuto questo messaggio per </span><span style="font-family:Arial,Helvetica,sans-serif">errore, vi preghiamo di eliminarlo e di inviare una comunicazione </span><span style="font-family:Arial,Helvetica,sans-serif">all’indirizzo e-mail del mittente.</span></font></div></div><div style="font-family:Arial,Helvetica,sans-serif"><font face="Arial, Helvetica, sans-serif" size="1">--</font></div><div style="font-family:Arial,Helvetica,sans-serif"><font size="1">The information transmitted is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you received this in error, please contact the sender and delete the material.</font></div>